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I
INTRODUCTION

Acoustic or sonic fatigue, the deterioration of material and
structural strength from high frequency wide band noise, is an
important factor in the structural design and safety of modern
aircraft and aerospace structures. The need to understand how
noigse is generated and how structures respond to that noise is
critical to the design of future aircraft such as the National
Aerospace Plane (NASP) and various short take-off and landing
aircraft (STOL). Advanced engine designs using propfans, pres-
ently noisier than conventional turbofans, add to the difficulty
of properly designing structures without the support of an ade-
quate experimental database.

The need for predictive techniques that are accurate and
easy to use is of paramount importance to designers of present
and future aircraft structures. Notwithstanding the uncertain-
ties associated with acoustic load generation, stress prediction,
adverse thermal environments, and the lack of fatigue damage pre-
diction models for both metals and composite materials, it is
important co have mathematical models that can represent the
random nature of the noise environment to a degree that permits
rational design to proceed. Of associated concern is that with
increased noise levels, the structural panels can behave in a
nonlinear fashion; thus, linear mathematical models may be inap-
propriate for use. Indeed, even if linear models were conserva-
tive in all respects, their use would only lead to designs which
were inherently too heavy, thereby potentially provoking design
modifications that are more costly and less optimal.

New materials such as polymer and metal matrix composites
have shown themselves to be potentially useful in aircraft struc-
tures; however, the limited amount of data related to their per-

formance in the presence of an acoustic environment is disturbing




to a designer. Thus, analytical techniques for predicting life
and reliability when only & minimal amount of material property
data is available are urgently needed.

The surface protection systems of aerospace and aircraft
structures arc usually constructed from discretely stiffened
panels or stiffened shells. High cycle fatigue failures have
occurred in these structures with the majority of fatigue cracks
appearing in the near vicinity of the stiffening element or the
stiffener itself (References 1-5). Proper dynamic interaction
between the panel and various stiffening elements should be taken
into account when calculating the response of the panels and of
the stiffeners.

Extensive research has been carried out for linear and non-
linear analysis of a single bay panel (References 6-13). For
discretely stiffened panels, most analytical work is basea on
linear theory. However, under intensive acoustic, aerodynamic,
and thermal loadings, these panels vibrate in a nonlinear fashion
and a nonlinear analysis is needed to predict deformationg,
stresses, and fatigue life. Different methods have been proposed
to study random vibrations of nonlinear systems (References
14,15). Among the most widely used are the Fokker-Planck equa-~-
tion solution (References 16;17), perturbation method (References
18,19), stochastic linearization (References 20-22), and the time
domain Monte Carlo approach (References 23-25). Exact solutions
to the Fokker-Planck equations are available only for a few
simple cases. The perturbation method is usually limited to one-
or two-degrees-of-freedom systems and is valid only for weakly
nonlinear cases. The stochastic linearization method, although
suitable for problems with strong nonlinearities, may not yield
meaningful results for complex nonlinear problems that might be
encountered in flight structures. The time domain Monte Carlo ‘
approach can be used efficiently for response analysis of nonlin-
ear structures subjected to random pressure fields. 1In this

approach, the random pressure inputs are simulated first in time

domain using simulation procedures of stationary and G~ussian
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random process {Reference 23), then the resulting ncnlinear equa-
tions of motion are solved in the time domain by numerical tech-
niques (References 23-25).

When surface protection systems of a flight vehicle are
exposed to high speed aerodynsmic surface flow or engine exhaust
hot gases, the surface temperatures could reach 3,000°F (Refer-
ence 268). The effects of fhose high thermal gradients are degra-
dation of strength, stiffness, and fatigue life (References
8,27). In addition, structural-aerodynamic instabilities such as
buckling, "oil canning," and "snap through" could be induced by
the action of thermal, aerodynamic, and acoustic loads (Refer-
ences 5,8,12,13). These effects should be accounted for in the
nonlinear response of structural panels.

The objective of the Phase I research documented herein was
to develop a computational procedure for predicting the life and
reliability of metal and composite structural panels subjected to
complex dynamic loads from acoustic, serodynamic, and thermal
environments. Starting with existing work for the prediction of
sonic fatigue in stiffened panc's using the time domain method
(Reference 28), this research has extended the model to incluc:
compoéite meterials. Furthermore, the analytical procedure now
includes programs to compute the time history response toc random
noise and statistical analysis to compute probability density and

peak distribution histograms of the stresses, upcrossing rates,
and expected fatigue damage.
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‘CECHNICAL DISCUSSION

The basic approach used in the present research can be cate-
gorized into three distinct stages, each involving its own set of
srecialized formulations. The first stage (Section II A.) con-
cerns a mathematical description and phenomenological representa-
tion of the acoustic pressures which act on surrcunding structure
(a panel in this work is used). The second important stage (Sec-
tions II B. and II C.) deals with the kinematic and structural
response of the panel to th2 acoustic loading. In other words,
what are the displacements and stresses? The third stage (Sec-
tion II D.) requires an estimation of panel fatigue life based on
panel structural response and the expected acoustic environment.

The relevant equations resulting from consideration of these
three stages .are contained in the computer code discussed in
Section II E.

A. SIMULATION OF LLANDOM INPUT PRESSURES IN SPACE-TIME DOMAIN

The random pressure acting on a thermal protection system of
a supersonic/hypersonic aircraft or sub-orbital/orbital vehicle
arises from engine exhaust noise, turbulent surface flow, oscil-
lating shocks, and flow separations. In addition, there might be
induced structure-borne dynamic loads due to engine and equipment
vibrations and nonsteady aerodynamic loads due to high speed
surface flow aad vibrations of the thermal protection systems.

During a normal mission consisting of take-off, maneuvers,
steady flight, and landing, the thermal protection systems will
be exposed not only to long duration stationary pressure but also
to short-burst intense nonstationary pressures. Furthermore,
oscillating surface shocks and flow separations could cresate
severe localized pressures which must be accounted for when pre-

dicting the fatigue life of a structural component.
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In the Phase I work documented herein, the analysis of the
random input pressure will be limited to stationary and Gaussian
random pressures arising from engine exhaust noise and turbulent
boundary layer flow. Examination of the nonstationary and non-
Gaussian characteristics of surface pressures arising in regions
of oscillating shocks, separated flows, and rapid changes in
thrust requirements will be addressed during the Phase II
activities.

1. Simuletion of Stationary-Homogeneous Gaussian Random
Preagure

Consider a random pressure p(x,y.t) acting on the surface
of a high speed flight vehicle. The pressure acting normal to
the surface varies randomly in tiqe and space along the surface
crordinates x and y. The pressure p(x.y.t) is characterized by a
ross-spectral density function S,(§,n,w) where §~x,~-x,; and
n=y;-y2: are the spatial separations and w is frequency. - The
cross-spectral density S, is obtained utilizing experimental
data, and various empirical forms are available for jet noise
(References 5,29), rocket noise (Reference 30), and turbulent
boundary layer flow (References 7,9). The simplest form of the
cross-spectral density is the truncated Gaussian white noise
pressure uniformly distributed with spatial coordinates ix and y
and

5 S, if O0SwsSw,
#(8, M, W) 0 if w<0 or w>w, (1)

where S, iz a given constant and w, is the upper cut-off
frequency.

The spectral density S,(k,,k.,w) can be obtained in wave-

number-frequency domain by taking the Fourier transformation of
Sp(E,n,w) as
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f f Sp(Eimiw)e e M dEdn . (2)

]
(2n)?

Splkykz )=

Then, the random pressure p(x,¥.t) can be simulated by the series
(Reference 23)

N, Ny Ny 1

PG,y t)=V2) ) D (S (kinkayw,)Ak, Ak Aw]

i=1 j=1r=1

cos(ky x+kyy+w,t+d,,) (3)

where ¢, are realized values of independent random phase s&angles

uniformly Zistributed between 0 and 2x. The values of the

spectra are selected at

kp‘jwkl""iAkl i"'lgz,...,Nx
kay=ko+ jAk, /j=1,2,...,N,
W, =W, +rAw r=1,2,...,N5 (4)

where the wave number and frequency intervals are

Aky=(kyu—ky)/ N,
Aky=(kau—k2)/N,

Aw=(w ,~w,)/N,; (5)

in which the sultscripts w and ! indicate the lower and the upper

cut-off values of the wave number and frequency, rcspectively.




For a generation of random sample fanctions from Equation
3 with the spectral density function close to the one specified
and & large number of zpatial (x,y) and time () points, N;, N,,
and N; must be large, and, as a consequencz, a significant amount
of computer time is required to achieve a simulation.

To reduce the computation costs and improve the effi-
ciency of simulation, the Fast Fourier Transform (FFT) technique
can be utilized (References 31,32). Rewriting Equation 3 in the

form
Mi-1My-1 M,-1

i ke e
p(x,y,t)=Re Z 2 Z A‘jre“ttre'("u" kg, y+w 1) (6)

=0 =0 r=0

and evaluating p(x,y.t) at

x=mlx, m=0,1,....M;-1
y=nly, n=0,1,....M,-1
t=qAt, q=0,1 ..., M,~1 (7)

where "Re" indicates the real part of Equation 6 and

1
Aur"[23;7(1‘311'1‘:21"(”:-)AkIAI‘:"'A“)]z . (8)

In Equations 6 and 7,
M =2" =y N,>N,=2"

M,=2"=v,N,>N,=2"

M;=2™ =y N >N =2" (9)




and

Ax =2/ M,Ak, =21/V k,,

Ay=2/ M, Ak, =21n/v k,,

At=2/ MzAw=21/Vv W, (10)

with v, =2™™™, v, u2™™ v =2 and m,>n,, m2>n2, M3>n, all

being positive integers. The use of the FFT technique can be
applied to Equation 6 directly resulting in a drastic reduction
of computer time.

A second difficulty arising from the simulation of a
three dimensional random process, as shown in Equation 6, isg the
creation of a large number of complex numbers that must be stored
in the computer for a standard FFT application. For example, if
N =N;=N3=128, v,;=v,=Vvy;=4, M;=M;=M;=512;, a three dimensional
field of 512 by 512 by 512 complex numbers must be stored in
order to perform a three dimensional FFT procedure. This storage
requirement is significant even for large mainframe computers.
Thus, simulations of random processes have been primarily applied
to one dimensional and, in some cases, two dimensional uses. If
a random pressure acting on a structural surface can be assumed
to be uniformly distributed in space, Equation 6 reduces to a one

dimensional simulation

M-1

fo, iw.t

r=0

P(t)= Re[

where

A, =25 (w,)bw]’

(12)




and S,(w) is the power spectral density of random surface pres-

i sure. In order that random pressures can be simulated either
from Equation 6 or Equation 11; the input spectral densities need
to be prescribed.

8 ' 2. Turbulent Boundary Layer Flow

s . _ Convective turbulent flow produces random pressure fluc-
tuations that act on the surface protection system of all flight
vehicles. A considerable amount of work, both theoretical and

experimental, has been carried out on this subject with regard to

} panel response, panel flutter, and noise transmission (References
; 7,9,10,24). However, for high speed supersonic and hypersonic

i flow, the information that is available seems to be very limited,
and a substantial amount of work will be needed to characterize
random pressures for high speed flows. For the purpose of this

f: work, the semi-empirical forms of the cross—-spectral density cor-
responding to separated supersonic flow given in Reference 9 will
be considered. For a honogeneous turbulent flow convecting in
the x-direction over a structural surface, the crosg-spectral
density can be expressed as

Sp(E,m, W)= S(W)|R(§,0,w)||R,(0,m,w)|e

in which R(§.n,w), S(w), and U, are the correlation coefficient,

surface pressure spectral density, and convection velocity,

L A LTI B SN

respectively, For separated supersonic flow, the empirical
formulas from Referen:e 9 are

R.(£,0,w)=e " (14)
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R,(0,n,w)=e " (15)

- - 20T —2 =3 _ s e
S(w)= (ﬁq.a./U-)e( 8.094- 1.239%-0.295®°~0.090®  -0.014@ *~-0.001m°) (16)

where 63-ln0»6/2nU.).6.Lh“ and g. are boundary layer thickness,

free stvam velccity, and free stream dynamic pressure, respec-
tively. The attenuation ccefficients a, and a, indicate the
degree of spatial correlation of random pressure p(x,y.t).
Similar forms of cross-~spectral density'are available for sub-
sonic and attached supersonic flow (References 7,9).

For a linear response analysis of surface panels using
the powsr spectral density approach, Equation 13 can be used
directly as an input parameter., This procedure is described in
Section II C. 1. However, for the time-domain nonlinear response
study simulated space-time histoiies are needed as presented in
Equations 6 and 11. The required gpectral density can be
obtained by substituting Egquation 13 into Equation 2 end pericrm-
ing Fourier transformation

S(w)a, a,

S, (kiiky,w)= .
P e ) e @/ U e k) 103 K3] ()

For low supersonic flow at Mach number = 2, &« 0,91 in., a;=

1.22, a,= 0.26, and U,~0.75U. (Reference 9).

3. Jet Engine Exhaust Noise
One of the primary causes of fatigue in many flight
structures is a result of acoustic loads generated by near-field
jet exhaust noise. Various empirical forms similar to whose
given in Equations 13-16 are aveilable to charscterize the random

pressure due to jet exhaust noise. Hcowever, for supersonic-

10




hypersonic aircraft such as the NASP, detailed statistical infor-
mation on the localized pressures does not seem to be available
at the present time. Preliminary estimates indicate that the
local noisze levels will be very large, exceeding 180 decibels
(Reference 26).

4. Uniform Disiribution of Random Pressure
Useful approximations can be obtained by assuming the
input pressure to be uniformly distributed over the surface of a
structural ccmponent. Then, the cross-spectral density can be
approximated using band-limited Gaussian white noise conditions,
such as the one given in Equation 1. The expression for S, can
be written as

So-pglosfl/lo )
(18)
where p, is the reference pressure, p,=2.9x10°° psi (0.00002N/m?),

and SPL is the sound pressure level expressed in decibels.

B, SIrRUCTURAL MODELING
The ‘joverning equations of motion for an orthotropic
composite are given by (Reference 33)

oW o %w 2w .
Dllz;—z+2(Dl2+2D“)W+D22;3—}:-‘-+cw+me
_9%F %w 9*F J*w . 3°F 2w
ay ax T ox? a;y Xy 9xdy
d*w d*w
-V NP VR M VEMT = P (x, Y, 1) (19)
ax? Yay®
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10%F 1 o*'F 19%
B YPLAC M F P A

2w )?" 22w o*w

+\72NT+-72N”-(~ .
* Y \dxay 9x2 ay? (20)

where D, D3, Dz, and D, are bending stiffnesses; a;;; @z Qz;

and a. are membrane compliances; N and N are the inplane loads .
applied at the boundaries; F is the Airy stress function; NI, N7,
M%, and M) are the inplane and bending thermal load terms,
respectively; P" is the random input pressure; m, is the mass
per unit area; h is the plate thickness; and é is the damping
coefficient.

The structural mechanics embodied in Equations 19 and 20 are
a result of using von ¥arman's equations for large deflections
{References 33-35) of elastic isotropic plates as modified by
Ambartsumyan for orthotropic materials (Reference 33).

The terms NI, Ny, Mi, and M] are computed from

h/s2

a
NT=—1 f T(x,y,2)dZ (21)
Clllll
~h/2
" hA/2
T 22
- 2
N, " f T(x,y,z)dZ (22)
-h/2
(X h/2
MI=e—L | T(x,y,2)ZdZ (23) )
Clllfl
~h/2
a N2
T 22
- 24
MI Gk f T(x,y,z)2dZ (

/72




in which a,; and a;, are coefficients of thermal expansion and T

is the temperature distribution in the panel.

The membrane inplane forces are given by

32F
Ne=3os (25)
O°F (26)
Ny=——3
o0Xx
2 (27)
N e OF
Y dxdy

such that inplane equilibrium requirements are identically satis-
fied. Equation 19 expresses the dynamic equilibrium in the
direction normal to the panel, while Equation 20 is the compati-
bility condition for inplane strains.

The panel is assumed to be sgimply supported on all four
edges. Exact boundary conditions for the Airy stress function F
are very complicated and, for the present study, the inplane
boundary conditions are satisfied on the average (References
10,35,36). Thus,

b a
ou
j:{zzdxdy-O (28)
o 0
a b P
v
j:f:—dydx-o (29)
¢y
0o o
N’Wlx-o.a-o

(30)

13




_A_ly"ly-o.bgo
(31)
1 b
nytg o nydy (32)
1 e
Nyx'—'a' 0 Ny.dx . (33)

The terms u and v in Equations 28 and 29 are the inplane dis-

placements which are expressed as

du O%F °F ;Y 1fow)?
ou T\ FnaEy T Hegnt e 75 5x (34)
du 32F  o*F .\ 1fow)?
é—y'(azzﬁ"'azz;—z;”\’y)’“z‘(g;) ‘ (35)

Equations 28 and 29 imply no inplane stretching of the panel

edges in an average sense and they correspond to the inplane

boundary conditions for immovable edges. Equations 30 and 31
specify that the average inplane shear forces are zero at the
boundary.

C. PREDICTION OF RESPONSE IN SURFACE PANELS

In order to assess the fatigue life and estimate the reli-
ability of thermal surface protection systems, dynamic response
in the form of deflection and stress is needed. For linear
systems, response calculations can be obtained either in the time
or frequency domains. The power spectral density (PSD) method is
commonly used to obtain solutions for a frequency domain
approach. For a time domain analysis, the simulation of random
input pressure, as described in Section II A., and numerical
integration procedures must be utilized. When the response is

14
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nonlinear, a time domain Monte Carlo type method can be developed
to obtain deflection and stress response solutions (References
11,24,25,28,36-42).

In the present study, the time domain analysis is verified
for a linear case by a direct comparison of the response predic-
tions to those obtained by the PSD procedure. Then, a detailed
study of nonlinear response using a Monte Carlo time domain
approach is developed.

In addition to the very high nois» levels that will be acting
on the surface of the NASP-type veh:i:les, the surface tempera-
tures are expected tc 2xceed 3,000°F (Reference 26). Such high
temperatures will induce large thermal stresses and instabilities
(buckling) of the surface panels. However, the thermal effects

and inplane loads are not considered in Phase I work.

1. The Power Spectral Density Method
Consider a rectangular panel, shown in Figure 1, exposed
to a random pressure p(x.y.t).
For a'homogeneous panel, the governing equation of motion

for small deformations can be written as

D, V%u+Buw+m = p(x,y,t) (36)

where

D,V*=D,0*/3x*+2(D,,+2D )3/ dx%dy*+ D,,0%/0y*
D, =E h®/12(1 =v ;v,)

Dy,=v, D,

D= Enh®/12(1-v ,vy,)

D“-Glzha/lz

ib6




in which E,, Ez, G v, B, and m, are moduli of elasticity,

Poisson's ratio, damping coefficient, and mass per unit area,
respectively. The solution for panel deflection can be expressed

as a superposition of urthogonal modes as

W(X,Y,8)= D ) Gua()X (X, ) (37)

muelp=l

where q.. are the generalized coordinates and X,.., are the modes.

Taking the Fourier transformation of Equations 36 and 37 and uti-
lizing orthogonality, it ¢sn be shown that

Qmn™ H pn P nn
(38)
where the frequency response function
2 2 > -1
Hopn= (W, ~ W+ 208, 0 W)
(39)
and the generalized random forces are
1 a b_
Pm,.-;;;f;fop(x,y,w)Xm..(xsy)dxdy (40)

in which a bar denotes a transformed quantity. The modal damping
coefficients t,, and the natural frequencies of panel vibrations

can be determined from

Comn ™ &0l ;7 W n)" (41)

W2, = (D, /M )V* X i/ X pun (42)
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where ¢, is a modal damping coefficient (percent of critical

damping) and v is a parameter based on experimental data. For a
stationary and Gaussian random pressure input p(x.y.t), the
deflection response spectral density can be determined from
(Reference 43)

sg("»)’tw)'z ZZZHmnH:lsmm-leanl (43)

Melreineli=1

where

1 a ra b rbd
Sms"n'T:"/;foj;foSpcgvﬂ;w)xm(xUYI)xrt(xa-yz)dxldyldxzdyz (44)

where an asterisk indicates a conjugate quantity.

The orthonormal modes for a simply supported panel are

. 2 . .
Xm,,(x,y)-—‘/,?.l—)-sm(mnx/a)sm(nny/b) . (45)

For a clamped-clamped panel, a rough approximation of the modes
can be obtained by using clamped-clamped beam modes

Xmn(X,¥)= X0 (X)X, (y)
(46)
where

17
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cosym(x/a— %)*- xmcoshym(x/a- %)

m=odd
Xnp'(x)=

I
Ama 1 1
sinym(x/a--z-)-'- X, Sin hym(x/a- 5)
- m=even (47)

The values of the constants A,, y., &nd %, can be obtained from

Table 1. Then, for a simply supported panel and uniformly dis-
tributed random pressure where S,(f,n,w)=S(w), the cross-
spectral densities of generalized random forces are

4S(w)ab n . , .
S - e T ] = (=1 1=-(-1 1-(-1 1-¢(~-1 .
iRl Ple IR CEDI A RICEble LRI CE PR NP
For a clamped-clamped panel
165(W) AP AmAn ey _ (_1y™ 101 ~(=1)"I01 = (= 1)1 ~(~1)"]
ot m:YmYnVrYt ) (49)

Stresses in a thin panel undergoing linear deformation
can be calculated from

i8
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TABLE 1

CONSTANTS FOR CLAMPED-PLATE MODES

1;0.7133 4.730040 0.132857 0.982
210.7068 7.853202 }-0.0278749 j1.000
310.7071} 10.9956(Ls |-~0.00579227]1.000
410.7071| 14.137164 0.0012041 ]1.000
5]0.7071] 17.278758 0.002503 1.000
>5]0.7071 yg+(m-9S)n sin%‘ 1,000
sinh’%m
12D
O, =~ h:,"z(azw/ax’+vma’wlayz) (50)
12D -
0y == —5—2(9*w/dy*+ v,;0"w/ 9x®) (51)
12D¢s _,
Ty =~ PE Zow/oxoy (62)

where o, and o, are the normal stresses and t,, is the shear

stress; ¥ is the distance from the mid-plane of the panel.

Taking the Fourier transformation of Equations 50-52, using HEqua-
tion 37, it can be shown that the spectrsl densities of the
stress components at the surface of a simply supported panel are

6D 2 = -
s, (x, y.w)=[-——5‘-l] Y | Hml?[tmnsa)?«v (ansb)?)? 5, X2,
. h meln=t (63)
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6D 2 @ - R
s, (x.y.w)-[ ,"’2] Y Y |Hml*[(an/b)2+ v y(masa)?? 5, X2,
v h m=]nel (54)

6Dy P & &
3‘,,(x-:v-w)'|: hg“] ".?;u.lIH,Mlzcmn/a)z(nn/b)’[a’xmlaxaylz~5‘,M * (85)

Equations §53-55 were obtained under a condition that the cross-
modal terms can be neglected and the cross-spectral densitien of
the generalized random forces are determined from Equation 44 by
setting m=r and n=1{,

The root-mean-square (rms) values of displacement and
stresses can be calculated from

1
- 2
rmsw Se(x w)dw
JERERTD 50)
0
where S, is the response spectral density given in Equation 43

for displacements and Equations 53-55 for stresses.

2. The Time Domain Method
To solve Equations 19 and 20, panel deflections are
expanded in terms of panel modes:

WX, Y t)= Y Y Apn(t)da(x,¥) (57)

m=in=1

in which A,, are the modal amplitudes and ¢,, are the natural

" modes corresponding to a linear panel. For a simply supported

panel, ¢.,, may be written as

m=1},2,3,...
n

) 2
¢m(x’y)'Xn(x)Yn(y) =1,2,3,... (568)
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where X, =sin(max/a) and Y,=sin(any/d) .

Substituting Equation 67 into Equation 20 yields:

124 F+ 2 1 a*F 13*F
:zzh‘3 i C PP84 ““‘)ha gay “hay‘

4 —
L LT LAt

—+VANI+VANT]

.{(nr__ms)[cos(m+r)nxcos(n+s)ny+cos(m-r)nxpos(n—s)ny]
a b a b
. . (m+r)nx (p-s)ny  (m-rinx _(r+s)ny }
(nr ms)[cos p cos b cos - cos_ 5 ] *(59)

The solution for F consists of homogeneous F, , and particular

solution, F, . The particular solution for F can readily be
obtained from Equation 59 by following the procedures given in
References 10 and 35:

1

1/ a nrems
F, =2\ 5 Z Z Z Z ApnA,,ms(nr-ms)
n r s
(m+r)ax (n+a)ny (m-r)sx (n-s)ny
. cos a ] a b
o+
Tll TIZ
! < 2Z Z Z Z ApA,,ms(nr+ms)
4\ b
m a r 2
(m+r)ux (n-s)ny X (m=-r)ax (n+a)ny
. cos a b + a S b

T2l . T22 ' (60)

where

21




Qe+ 20y, a?
c—(m+r)¥(n+s)?.

a
Tu""}'?(m*r)""

R b2
#2120 (s )t
Tms‘—1’;"3(m-r-*+9—?‘%—2—313-§-Z-(m-r)2(n-s)2
+%2~§—;-(n-8)4

a“+2a12 a2

Ay
Ta= o (mer)*s e (m ) (n-9)?

R
4
a
Fpe ()’
a Qg+ 2a 2
Tam o (m=r)ts =22 (m =) (n+ )?
- an at
T (e (61)

For the case of inplane boundary conditions that are
sagtisfied on the average, the homogeneous solution can be written

as

C.,x? C,y?
2 * 2 _C3x:y (62)

I"hg

where €, C,, and C, are constants of integration that are to be
determined from the boundary conditiong specified in Equations
28-31. Using Equations 28-31 and 34 and 35, together with the
expresunion for Airy stress furttion F and the solution for panel
w, the constantis of integration are
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n? m? n?
Cl-'é-z ZAim(azz‘&_g"'amg") (63)

n? n? n? '
C'z"'a';};—ﬁ;n(_ama?*an;) | (64)

C,=0 . (65)

Having completely determined F, Equation 19 is solved using the
Galerkin method by computing the integral average of Equation 19
weighted by each term of Equation 57. The natural frequencies of
the panel obtained by the linear theory are imposed into Equation
19, Since ¢,, are the natural modes of the panel, then

% . 2*® mn 0“0 mn 2
D11W+2\D12+2065)W*D22"§F-'mpwmn¢mu (66)

in which w,, are the natural frequencies of the undamped linear

system., Substituting F=F,+F, and w as given in Equation 57 into
Equation 19, and utilizing the Galerkin type procedure, the fol-
lowing system of nonlinear differential equations are cbtained

. c . nlab « « «
Au""A'd_uAu*wZAu*mZ, ; 2;‘ Zfiw‘imk/im.

[(1)2( o PP .mz_ Q2 .R)E\
2 2 2 2 3§
a aQnlzap=—Qaiz a“ a;Qzgp-aiy d°)

+(j)2(_ Qa2 _rnz* a 'ﬂc"'\ﬂ
2 2 2 2
b anQzx—Qy; a a;dz=-aiz b }J

(67)
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where w, are the natural frequencies of a rectangular panel. '

The generalized mass and the generalized random forces are

a b
M‘,-m,,ffd)f,(x.y)dxdy (68)
0 O
1 a b .
Qu(t)-mffp’(x,y.t)%(x.y)dxdy » (69)
o 0

The nonlinear stiffness coefficients Z 4~ 8re given by

Z iqasmury ™ (Kr =MD F g (m+r, k+ l)+f‘qd,mkrl(m-r.k- )]

+{kr +mO[F gapmee{m=r k+ )+ F gypmer(m+r, k= 1)] (70)

where

Fsrmiri(G o H) = {2GHAFIB(i+d, 6+ BLi=d,6)I[ B(g+ £, H)
+B(a-f,H) |~ (H?a*+ G2 £3)] v(i+d.6)

- ¥(i-d,6) |Iv(a* £, H)-¥(a~ £, H)1)/D(G. H)

where
- Qo2 ., Ges*2812 a? _, g+all a' .
=, — et . —_— e H
D(G,H) 5 G™+ 7 5 G“H P
and
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0, G=H=90

Fiqd,fmkrl(G ’ H)- {F. wd;mrt(c ’ H) ’ O'theI'Wise

1, j=k#0
B(jrk)={ =1, jm=k=O
0, otherwise

2, Jj=k=0

, Jjuk#O
0, otherwise .

[

Y(jsk)=

Before step~by-step numerical integration can be implen-
ented for the coupled system of nonlinear differential equatlons
given in Equation 67, the time histories of the generalized
random forces Q,(t) are needed. This is achieved by first simu-
lating the multidimensional random pressure p’(x,y,{) in space-
time domain and then evaluating Equation 69 numerically for each
value of indices (,j . Following the procedures given in Refer-
ences 23 and 31, the stationary random pressure p"(x,¥y,t) can be
simulated as given in Equation 3. -

An alternate procedure to generate the generalized random forces
Q,(t) is to substitute Equation 3 into Equation 69 and evaluate
all integrals in closed form. The generalized random forces are
then simulated as multi-variate random processes (Rcferences
31,32). If the pressure distribution is uniform over the panel
surface, the simulation procedure reduces to a single variate and
one dimensional random process.

The displacement and stress response time histories are
developed for one realization of the randem input pressure
p'(x,y¥,t)e These solutiong would need to be repeated for a number
of different realizations and then the response statistics calcu-
lated using ensemble averag:s in a Monte Carlo senge. However,
by assuming the input pressure to be an ergodic random process,

it is sufficient to obtain a solution for conly one realization

25




and then use temporal averaging to calculate the required

response statistics. Then, the mean and the rms values of the

displacement can be determined from

T
E(x.y)=%fw(x.y.t)dt (71)
[v]
1 7 :
Weme(X,Y)= ;fwzcx,y.t)dt

(72)
(]

where T is the period of the simulated time history of input

pressure. Similar expressions can be developed for panel

stresses. The root-mean-square values calculated from Equaticns

56 and 72 should yield the same results.
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zf)
e 2 2
apjaz-ai, a anpxp=-az b

2 12
. Mmux . nn Q22 m a n
+u%z) ) Ap.sin sin y( R T 2)
m n ‘a b aazx-aj; a o, 222"“12 b
ﬂz a 2 nr-mayQ
' -2(2) Y5Y T AmaLmsar-ms)
m n r E
. (m+r)nx (nee)ny

(m=-r)nx (r-s)Ry
,,,(n-s)zcos ———C0S — }
le

n?fa)? |
--;(-5) ZZZZA,,,,,A,,ms(nr+ms) -

{mer)nx (n-s)ny
. (n-s)zcos —C0S—
b T 3,
(m-~rixx (res)ny
+(n+ s)zcos ——C0S — }

(73)
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a(xyzt)'—zz (-——Q—'L-—-E———m )

aQz- al a? A Qap=- a,z b?

' 2 12 2

. mux ., nny Qo n a m

+1%2 ) ) Ap.sin sin - ——
auGz-ai; a° .a;ax+-ap; b

le a 2 nr-mss0
_T(E) Z Z Z ZAmnA,,ms(nr-ms)

+riu +a)n
(m+r)ax s(nsy

2
J m+r) CoS 2 co 5
a T“

(m-r)nx (n=-s)ny
2
- m-r) cos 5 cos 5
a T2
2 2
n-fa
—Z(g) Z z Z Z ApnAns(mr+ns)
m n r t ]
(m+rinx (n-s)ny
. (m-r)zcos ——C0S—
a T21
(m-r)nx (n+s)ny
2
- (m r) cos " cos b
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max _._RRy ok m? a” "2)
Y. %, 0)=R? - b
Tsy(x Y.2,t)=n zggﬁ"'s“‘ a sin b (a"aa-aﬂ a' a1 Qxn- dxz b?
r‘a/ A= K540
-5 b) ZZ Y A4, ,ms(ar-ms)
[ 3 4
{((m +r){(n+ s))cos ('W)“ (u*:m

{(m r)(n s) cos(m r)uucos(u-l)ny}

’-;-(g)z Y T T Awsd ms(ar + ms)

(me r)lu (u-n)uy

{( R- s)(m+r))°°3 v

((n+s)(m ,-))cos

(m- r)u (u‘t u}
e

(75)

D. SONIC FATIGUE OF SURFACE PANELS3

The key elements in predicting the fatigue life of a struc-
tural component to random loads are detailed stress load spectra
at a critical point on the structure and reliable cumulative
damage rules for random stress amplitudes. For & multidimen-
sional stress state, the most damaging stress components must be
known as well as the choice between the nominal stress and the
actual load stress in complex geometries and connections. The
load spectra is a function of mission requirements, flight condi-
tions, and flight duration. The information on threshold cress-
ings and peak exceedances is needed for the development of stress
load spectra. In addition to this information, stress data in
the form of S-N diagrams are required. Such data are usually
obtained from coupon testing under constant amplitude loading and
are approximated by the following equation
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NS*= 3B (76)

where S is a fixed stress amplitude for constant alternating

load, N is the number of atress cycles until failure at the
stress level S. and A and B are material constants depending on
the material.

Since stresgs response of surface panels is random, fatigue
data from random tests should give the required information for
life predictions. In this case, the gtress response S is repre-
sented as the root-mean-gquare (rms) value and the number of
cycles N correapond to cycles of a frequency at a dominant
regsponse peak. For a linear and narrow band Gaussian response,
reasonable predictions of fatigue 1ife can be expected using this
approach. However, under severe acoustic and thermal environ-
ment, the stress response is nonlinear and non-Gaussian. Fur-
theraore, for most practical applicationsa, fatigue data under
actual random inputs are rarely available for full scale struc-
tures or structural components. Most of the fatigue data
digested into the S-N diagram form are for coupon specimens under
constant amplitude loading. This information, together with the
distribution of stress response peaks, can be utilized to con-
struct a life prediction model for random stresses.

Consgider that the number of fatigue cyclea is equal to the
number of positive stress peaks, or stress reversais, and that
each damage occurs at each positive stress peak. Then, according
to the Palmgren-Miner linear cumulative damage rule (Reference
44), the total cumulative damage can be written as

D= Zn(S,)/N(S,) (21)

where n is the number of stress peaks (cycles) experienced by the
structure at stress level S, , and N is the number of cycles at
which failure occurs. Fatigue failure occurs when D reaches a

value of unity. Substituting Equation 76 into Equation 77 gives
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To account for positive peaks that occur in the negative stress
region and add to the cumulative damage, Equation 78 can be
modified to

1
-EZR(S‘)ISH . (79)

i

Since gtress response is a random quan.ity, the expected damage
in the time interval T can be written as (Reference 43)

E[D(t)]-yéﬁflsl*P,(S)dS (80)

where E[M;] is the expected total number of positive stress peaks

and P,;(S) is the probability density function of the peak magni-
tude of the random stress process. The expected total number of
peaks can be estimated from (Reference 43)

® 0
ElMel=- [ [ §P.(s,0,6)d5ds ‘ (s1)
where P,,, is the joint probability density of S(t) (stress), S(t)

(stress velocity), and &(t) (stress acceleration).

1. Linear Stress Rglpon-e
The response of a linear system toc a Gaussian input is
also Causgsian. For a stationary Gaussian random process, the
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probability density P, and the joint densities P,, , P,,, are
known. Then, the expéct.ed number of total peaks and the density
of peaks can be evaluated in closed form (Reference 43)

1
E[Mr]'ggda/dg (82)

-

2
—a?)? (—r—')
Pz(S)""l-'(1 2 )e 2e3li-a%) \

o.\ 21

1 -
N

22
202 o.J2a72-2 (83)

where o,, 0,, 0, are standard deviations of S(t), S(). &(t) and the

paraneter a is

a=02/0,0, . (84)

If the spectral density, S,(w), of the linear stress process S(i)

ig known,
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y _ i ‘
g, = [S,(w)dw.] |
| a 1 i
1 |
~ - 13 ‘
i g, = fwzs,(w)dw |
. [ -- .
1
_ -
o= fw‘s,(w)dw . (85)

The standard deviations o,, ¢,, and o, correspond to the principal

(maximum) stress in the panel. Two limiting cases of peak dis-
tribution can be obtained for a=1! and a~0. A value of a=1
corresponds to a narrow band process and the peak distribution
reduces to the well known Rayleigh distribution while for very
small o, Equation 83 may be approximated by a Gaussian
distribution.

For the case of narrow band stress response a=1, the

expected number of peaks per unit time reduces to

1o
E[M]=E[N.(0)]=5== (86)
s

where E[N.(0)] is the expected rate of upcrossing of stress

process S({t) at zero threshold level. The distribution of stress
- peaks is that of Rayleigh distribution

!;cﬁ\»ou‘ -

: ' S PP
Pl(S)";s-,;,e(‘/zc') 0Ls<o

(87)

33




The expected damage can be obtained in closed form from Eguations
80, 86, and 87 as

t(V20,)" (A+2
B r( )

E[D(%)]=E[N.(0)]" . (88)
where
F(y)=2,./ x¥ e dx, y>0 (89)
0

is the Gamma function. For a single degree of freedom response
the expected upcrossing rate E[N.{(0)] can be replaced with the
natural frequency fo (cycles/sec) of the surface panel. For the
cases where many modes participate, the single mode approximation
is not valid and expected damage shculd be calculated using Egua-
tions 80, 81, and 83. 1In this case, it ia difficult to obtain a
closed form solution and & numerical procedure is used to evalu-
ate the required integrals. The expected total damage in the
interval from t=0O to =T (a selected time period) can be

T
obtained from {E[D(r)yir . For a stationary random response

process, E[D{(T)]=-TE[D(%)] .

As shown in Reference 39, the expected damage E[D(T)]
does not change by much when plotted versus [{M;]T for a ranging
from 0.25 to 1. However, for a wide band process (¢ <1) the total
number of stress peaks, F[M;] , is much larger than for a narrow
band process (a=1) Thus, fatigue time to failure at E[D(T)]=1
will be shorter for a wide band response. or example, for an
extreme case when a is very small, distribution of peaks may be
approximated by a Gaussian probability density
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P,(s)“—\/?x_t_‘—’_e ~0<g<o (30)
)

Then, from Equations 80 and 88

(91)

t(ﬁo.)“r(xn)

E[D(v)]= E[M;}—= 5

JnB

Since E{M.],> E[N.(0)],, (9,), > (0,),» where the subscripts w and n

indicate wide band (meny modes) and narrow band (single mode )
strese response, the expected damage for a wide band response
will be larger than for a narrow band response. However, except
for these extreme cases the peak distribution of a stationary
Gaussian random stress process is neither Rayleigh nor Gaussian.

2. Quasi-Nonlinear Single Degree of Freedom Stress Regponse
Approximate solutions for expected fatigue damage can be

developed by assuming the nonlinear panel response to be domi-
nated by a single mode, reducing the nonlinear equations of panel
motions to a Duffing’'s type equation and using a linear stress-
strain relationship. Such a procedure might not broduce meaning-
ful fatigue estimates of a realistic surface panel, but it could
give preliminary guidelines on the effect of nonlinearities. If
the inplane motions of a panel are constrained at the edges, the
governing equation might be approximated by (Reference 45)

DV w-m, Ac?(d*w/ax?+0*w/dy?)+c w
+mw=p(x,y,t) (92)

where




a b

1 2 2
A m[{[(aw/ax) +(ew/dy) " ]ldxdy (93)

and ¢ is the wave speed

R
¢ p(l-v?) (94)

where p is the material density and v is the Poisson’s ratio.
For simple support boundary conditions and single umode
approximation

w(x,y,t)y=qg(t)sin(nx/a)sin(ay/b) . (95)

Substituting Equation 95 into Equations 92 and 94, and utilizing
orthogonality gives

G+25,w g+ wi(g@+yg’)=P(t) (96)
where
4 T n n
, X , ny
- Y, —_— —_— 97
P{t) mpab.[ {p(x y,t)sin > sin 5 dxdy (97)
y=3/2h% . (98)

For a uniform noise pressure distribution over the panel surface,

16
P(t)-m n,,p(t) ~ (99)

P
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Stresses in the panel (linear stress-strain assumption) can be
calculated from Equations 50-52 in terms of the generalized coor-

dinate q(t). At z==h/2 and the middle of the panel (x-a/z,

y-blz), T.y=0 and the principal stress is the larger of o, and

¢, . Then, the principal stress S$(t) can be related to q(t) as

S(t)=Aq(t) (100)
100

where

il 2 2y |
A= s oen (/@) v/b)?) 0,>0

A-———Ell——[(n/b)%v(n/a)’] g

(101)
>0
2(1-v?)

Y

It should be noted that Equation 100 is a crude linear approxima-
tion to relate stress and nonlinear displacement. Then, Equation
96 can be written as

S+25,w, s+ Wi [S+eS ] =W(t) , (102)

where W(t) is assumed to be a Gaussian white noise in which

16 A Y
t and €™ — |
mpnap( ) yE

W(t)= (103)

The approximate solution for probablility density of peak magni-
tude was obtained in Reference 43
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P;(S)'M(S+e33)e{ wkL0/aTeS “]> (104)
nk
and
16 A \?
k-(mpnz) Sv (105)

where S, is the spectral density level of the Gaussian white

noise aproximation. Since the standard deviation of linear

stress response is

ni—-

(106)

! 164 Swn ]
og.=[nk/(2 ® V= L
s [ ( §own)] mpﬂz[ztow?l_l

Equation 104 can be written as

2
-3 _es%/262
342 €S /25.}

! {
P,(S)-F(S+ESS)Q : 0<S<ew ., (107)
&

Substituting Equation 107 into Equation 80, the expected damage
for the simplified nonlinear system can be determined from

® s2 es?
BLMAT T ar o \ "o 58]
Fro(o)- ST [(oriveanayel # HHlgs  (on
£ 0

The expected number of total peaks per unit time for & narrow
band approximation can be computed from (Reference 43)

E[M,]~Cw? o? (109)

38

-




where the constant ¢ can be evaluated from the normalization

condition

ffP“(s,s')dsdsi-l (110)

- - —®

- where P,;, is the joint density function of the nonlinear stress s

and stress velocity ¢

2 $ Il‘
P,(s,8)= Cg<_“f‘l"fl[%wf'(;‘7)]} . (111)

Substituting Equation 111 intc Equation 110 and integrating
(Reference 43)

Je [- o :Im§(;%?) . (112)

where K, is Bessel’s function of the second kind with imaginary

arguments. To the first order in €, the equation can be approxi-

mated as
1 3 .
Thus,
b - W, ‘
: E[M]~ . (114)

2n(1-e30?)




A

For linear response €=0, and E[M;]=E[N.{0)]=w,; /2% .

To evaluate the expected damage from Equation 108, numer-
ical integration procedures can be utilized. The Equations 108
and 109 correspond to nonlinear deflections of the panel with
linear stress-strain relationships assumed. If the stress-strain

relationship is nonlinear such as

S=D,x+ ) D, x" ,
' nZZ (115)

where D, are proportionality constants, difficulties would arise

in obtaining the Jjoint density fuaction P,, and the peak density
function P,(s)s For n=2, closed form solutions were obtained for
Py E[M;) and P,(s) in Reference 43.

The procedure presented in this section can be applied to
estimate the fatigue life of simple narrow band single~degree-of-
freedom systems. The linear and the nonlinear response of
surface protection systems to exhaust noise and supersonic-
hypersonic turbulent flow will be componsed of many modes, and
simplified models presented could lead to erroneous fatigue life
estimates. However, these procedures could serve as useful
guidelines for the more realistic fatigue life estimates of

multimodal nonlinear systems.

3. Nonlinear Stress Response

For a nonlinear random stresg response, the amplitude
distri.ution is non-Gaussgian. Furthermore, the spectral density
of stress response exhibits a wide band characteristic indiéating
that a large number of modes could be contributing to the
response process. An improved damage model for nonlinear stress
can be constructed by computing the histograms of stress peak
distribution directly from stress response time histories and
then using Equation 80 to predict fatigue damage. The total
number of peaks per unit time E[M:] also can be evaluated numer-
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ically from the response time history. Such a procedure has been
ugsed in References 38-42 to determine fatigue life of stiffened
titanium panels at room and elevated temperatures.

The histograms of peak distribution and the total number
of peaks could account for the stress overloads, pressurization
lbads, persistent stress reversals due to snap-through, oil
canning, etc. However, the fatigue relationship given in Equa-
tion 76 corresponds to either a constant amplitude stress or a
root-mean-square stress of a étationary process, Furthermore,
the linear damage superposition from Equation 77 might not be
valid for the severe loading conditions to be encountered by the
surface protection systems. For metal materials and low cycle
fatigue, significant improvements have been made in predicting
the life of a structure by utilizing fracture mechanics and time
domain stress solutions (Reference 46). However, for high cycle
fatigue, the crack propagation stage might be relatively short as
compared to crack initiation, and the time domain crack growth
gsolution might not be meaningful in assessing the life of a
structure. Additionally, for composite materials no reliable
theory seems to exist for predicting crack growth as a function
of random stress response,

E. COMPUTER PROGRAM DESCRIPTION

The primary objective of this research has been to demon-
strate that the use of a Monte Carlo simulation of a random
process can be integrated into dynamical equations of motion to
produce a time domain response predictive approach ‘o understand-
ing the fatigue of panels exposed to acoustic and sonic noise.
The theoretical equations of the time domain approach presented
in Section II C. 1. have been programmed using FORTRAN, and the
resulting computational procedure is called TDR (Time Domain
Response). In this section, & brief explanation of TDR will be
presented. Appendix A of this report contains a FORTRAN listing.
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TDR is written to handle the time domain response analysis of
a simply supported rectangular panel subjected to uniform random
pressure. Once TDR has been successfully executed, an output
file (FOR001.DAT) is c¢reated which contains the time response
history of displacements and stresses. That file becomes input
to another program, PDF, which calculates the probability density
functions of displacement and stresses and up~crossing rates. A
schematic of these programs and their relationship to each other
is provided in Figure 2., The files created by PDF can be read by
various graphical display devices to producs plots of statistical
quantities of interest. The fatigue life of a panel is computed
with the computer program DAMAGEl which uses as input the output
file FOR008.DAT from PDF,.
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IIX

RESULTS™

Earlier sections of this report have discussed noise
sources, their interaction with structure, especially light-
weight panels, and methods for determining structural response
under acoustic and sonic noise inputs. The primary objective of
the present research is to use Monte Carlo simulation techniques
to model random noise in such a manner that the response of a
panel can be examined in the time domain. The validity of the
time domain approach is verified by comparison to existing
methods and/or experimental data. In the present research the
lack of experimental data necessitates the former manner of
verification.

Since existing methods of sonic fatigue prediction rely upon
linear strain-displacement relations, the theoretical derivations
in the time domain presented earlier were reduced to equivalent
linear analysis. The results from the linearized time domain
method is then directly comparable to the power spectral density
approach. The results of that comparison are provided in Section
III A. which is concerned with isotropic plates.

A significant advantage of the time domain method presented
herein is that it can be extended to the regions involving both
nonlinear kinematic and nonlinear material behavior. For pur-
poses of this research, nonlinear kinematic relations were used
to model the strain-displacement behavior of the flat panel. The
nonlinear strain-displacement relations allow the modeling of
inplane stretching in the panel--a phenomenon which is extremely
critical to the prediction of fatigue in panels expcsed to high
levels of acoustic noise. Demonstrations of the importance of
this modeling assumption are provided for both isotropic and

ocrthotropic composite panels in the sections to follow.
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The extension cf the isotropic derivations to the composite
idealization is important and underscores the versatility end
adaptability of the time domain method. While not addressed in
this research; the role of transverse shear and material nonlin-
earity in the matrix material is an important behavior which will
be examined in future Phase II work.

The results pregsented herein are comprised of time response
histories of displacement and stress, probability density and
peak distribution histograms, up-crossing rates, and predictions
of sonic fatigue life for both isotropic and or :hotropic compos-
ite panels.

A. COMPARISONS BETWEEN THE TIME DOMAIN AND POWER SPECTRAL
DENSITY METHODS {ISOTROPIC PLATES)

As an example of the veracity of the time domain approach,
the nonlinear response and fatigue life of a simply supported
panel made from 6Al1-4V titanium material is predicted. The panel
shown in Figure 1 is assumed to be exposed to a uniformly dias-
tributed stationary Gausszsian rendom pressure for which the trun-
cated spectral density is given in Equation 18. All the analyses
presented here are obtained for lower and upper cut-off frequen-
cies of 0 Hz and 500 Hz, respectively. The selected frequency
bandwidth was Aw =21 rad/sec (1 cycle/sec) with the input levelse
of the random pressure prescribed in decibels. For example, a
uniformly distributed white noise spectral density of 140 dB cver
a frequency range 0-500 Hz corresponds to an overall socund pres-
sure level of 167 dB. If the upper cut-off frequency is
increased to 1,000 Hz, the overall sound pressure level would
increase to 170 dB.

The random input pressure p(t) was simulated from Equation 11
with My M=~4,096, N3;=512, and At=0.00025 second. Thua, the
length of the simulated process is 0.00025 second % 4,096 = 1,024
second. The fundamental frequency of the metallic panel selected
for this study is about 100 Hz and the fundamental period is 0,01
second. Thus, the simulated process covers about 102 natural
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periods of the panel. It has been shown in previous studies,
that for & stationary response, reasonable statistical properties
can be obtained from a time history which extends for about 100
natural periodas of the structure.

The numerical results were obtained for a panel with the fol-
lowing geometric and material properties: a = 20 inches, & = 8.2
inches, h = 0.05 inches, E = 16.0 X 10* psi, v = 0.34, my=p,h ,

p, = 0.000414 lb,-sec®/in*. The modal camping coefficients were
obtained fromw Equation 41 with vy = 1 and §, = 0.02. The numer-
ical calculations were obtained for thren modes in the x direc-
tion (m=1,2,3) and cne mode in the y direction (n=1), It should
be noted that for a uniform input pressure distribution only the
odd modes contribute to panel response. The modal frequencies of
the simply supported panel are w;, =620 rad/sec (98.7 Hz) and
Wwjy; = 1,333 rad/sec (212.2 Hz).

When the panel response is calculated in time domain, the
spectral densities of displacement or stress process Z(x',y".t),
where x° and y* are the selected spatiel points on the panel, can
be obtained utilizing the Fast Fourier Transiorm (FFT) technique
(Reference 32). The finite transform of Z(x°,y".t,) at discrete
frequencies w, can be written as (Reference 32)

Z(x®,y*, T %= ., . (2xkn
At ¢ - Z;Z(JC ‘y ,t,,)e i2nkn/M (116)

= =
Z(x",y W)=
k=1,2,.... M
in which T, is the total duration of the response random process

and t,=-nAt with At being the time interval. Then, the FFT numer-

ical estimate of the response spectral density is

. [ 3 2At T~ - L
Sz(x,y .wx)"ATlZ(x )| (117)
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The numerical results presented in this section correspond to the
center of the panel, i.e., x* = 10 inches aad y*' = 4.1 inches.
Stresses are calculated at z~h/2 (top surface of the panel).

The displacement response time higtories at different levels
of input socund pressure are shown in Figures 3 and 4. For an
80 dB (overall = 107 dB) pressure input, panel response is linear
and the largest peaks reach about 0.01 inchea. At 120 dB and
higher levels of input pressure, panel résponse i8 nonlinear with
peaks reaching about 0.26 inch for 150 dB (overall = 177 dB)
input. As can be observed from these results, the character of
the random response process changes with the increasing degree of
nonlinearity. It should be noted that the mean value of dis-
placement response is zero for the linear and the nonlinear
cases.

The ¢,, stress response time histories are presented in

Figures § and 6 for several different levels of input pressure.
For the geometric conditions chosen for these numerical examples,
the shearing stress t,, -0 and the normal o¢,, stress is about one
half the value of the o, stress. Thus, ¢,, is the principal
stress.

For an 80 dB sound pressure input, panel responsgse is linear
and the time history of stress response is similar to the disg-
placement response. However, as the input levels increase and
the panel exhibits nonlinear vibrations, the stress response
changes to a wide band process. Furthermore, the mean value is
not zero and it increases with the increasing sound pressure
input level. The mean values of atress response corresponding to
input levels 80 dB, 120 dB, 140 dB, and 150 dB are, respectively,
0.04 psi, 431 psi, 5,418 psi, anl 10,080 psi. The mean stress is
caused by the inplane stretching of the nonlinear paenel.

The nonlinear transformation between stress and displacement
(Equations 73,74,75) contains quadratic terms of the displacement
component. w . With the increasing degree of nonlinearity, these
quadratic terms tend to dominate the stress-displacement trans-

formation process. These effects are clearly evident in Figures
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5 and 6. For the sound pressure input of 150 dB (177 dB
overall), the stress peaks reach 67,000 psi., It should be noted
that even these high stress values are below the yield strength
(120,000 psi) of the titanium material.

The root-mean-square (rms) displacement end normal stresses
are plotted in Figures 7 and 8 versus the rms of the input pres-
sure. The linear response predictions were obtained by the power
spectral density (PSD) and the time domain methods. In the time
domain approach, the governing equations of motion and the
stress~-displacement relationships were reduced to those of a
linear problem. However, the simulation of the random input
pressure and the sclution procedure of the governing linearized
equations were identical to that of the nonlinear case. As can
be observed from these results, the agreement between the PSD
method and the time domain approach is very good. For example,
at an input level cof 140 dB (167 dB overall) the rms displace-
ments and stresses are: w.. = 0.314 inch, 0.306 inch; o,, =
14,300 psi, 13,900 psi; o,, = 26,760 psi, 26,020 psi (PSD, time
domain).

It should be noted that these linear response predictions
overestimate the actual nonlinear response by a large amount.
This c#n be seen from the results shown in Figures 7 and 8. For
the input levels exceeding about 110 dB (137 dB overall), nonlin-
ear analysis is required for displacement and stress response
predictions. This input limit corresponds only for the simply
supported 20 inch by 8.2 inch by 0.06 inch titanium panel exposed
to uniform random noise pressure. For stiffer panels this limit-
ing input presgsure value would increase while for legs stiff
panels it would decrease.

The response spectral densities for deflection and normal
stress 0, are shown in Figures 9-11. At low input levels (80 dB
and 100 dB) where response is linear, distinct peaks cen be seen
at the modal frequencies of 98.7 Hz and 212.2 Hz, Furthermore,
similar characteristics can be seen between the spectral densi-
ties of displaéement and atress. As the input pressure
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increases, the distinct peaks that are characteristic of linear
vibrations tend to flatten and shift towards higher frequencies.
For an input level of 140 dB, the distinct peaks are no more
evident and the response spectra tends to exhibit the character-
istics of a wide band random process. In addition, the shape of
the displacement and stress spectral densities is different. The
spectral densities shown in these figures are the unsmoothed
outputs of the FFT of the response time history corresponding to
one solution realization.

When the random process possesses wide band characteristics,
large fluctuations of the FFT output are typical. To improve the
FFT inverse calculations, a larger number of simulated points and
smaller time steps should be taken. 1In addition, the response
spectral densities should be calculated for several realizations
of the random input pressure. These spectral densities are then
averaged to cbtain the response spectral density.

Diasplacement or stress response probability density histo-
grams, peak distributions, total number of peaks per unit time,
end threshold crossing rates can be obtained from the response
time histories. Figures 12 and 13 show the probability density
and peak distribution histograms for the nonlinear displacement
response. For comparison, a Gaussian density function is given
with each probability density histogram and a Rayleigh distribu-
tion with each histogram of peak distribution. As can be
observed from these results, the nonlinear responsge is no longer
Gaussian and the peak distribution does not fcllow the Rayleigh
distribution.

Similar results are presented in Figures 14 and 15 for normal
stress component ¢,, . For the nonlinear stress process, large
differences can be seen between the response histograms and the
theoretical probability and peak distributions. These large dif-
ferences are produced by the nonlinear relationship between
stress and displacement. Thus, the various approximate theories

which predict the nonlinear displacement response but use a
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linear stress-displacement relationship to obtain streasesa do not
give a meaningful procedure to obtain nonlinear stresses for
sonic fatigue analysis.

From the results presented in Figures 13 and 15; it can be
seen that for a highly nonlinear response the stress process con-
tains a large number of peaks above the 20 (o = gstandard devi-
ation) range. However, the histogram of displacement peak
distribution does not show any peaks above the 2.2 o range. Here
the peaks seem to be concentrated at about the 1.5 o value.

Since fatigue life is very sensitive to the magnitude of stress
ranges, erroneous fatigue life predictions will be obtained if
the form of the stress peak distribution is assumed to be the
same as the displacement peak distribution. In additicn, the -
nonlinear stress process contains a mean value while the mean is
zero for a nonlinear displacement response.

The threshold up-crossing rates for the ¢, stress process are

given in Figure 16 for several levels of input pressure. For a
linear stress response at 80 dB input; the threshold up-crossing
rate closely approximates a theoretical Gausaian prediction. As
the input pressure increases and stress response becomes more
nonlinear, the up-crossing rates increase.

The expected fatigue damage has been predicted utilizing
Equation 78. The expected total number of peaks F[M,;] were esti-
mated directly from the stress response time histories. The
values for E[M,] are 150, 228, 566, and 748 peaks/second for 120,
130, 140, and 150 dB sound pressure inputs, respectively. The
integral in Equation 78 was evaluated numerically. The distribu~
tion of stress peaks P,(s) is the histogram of the peak distribu-
tion corresponding to the principal stress o, (Figures 14 and
15).

To illustrate the fatigue damage egstimation procedure,
typical parameters were chosen from experimental data for the
titanium material under room temperature. These parameters cor-
respond to tests at constant stress amplitude and stress ratio
R=-1., The stress ratio R is defined as R=0,,/04., in which o,
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is the minimum stress and o,,, is the maximum stress. A stress
ratio R~-1 corresponds to a zero mean value. The experimental
parameters chosen in this study are A=6.0 and B~ 1.518x10% When
using these parameters, the stress amplitude is in units of ksi.
To account for stress concentrations, size effects, and manufac-
turing imberfections, a fatigue reduction factor K, should be
introcduced. However, for the simple panel chosen in this study
no fatigue reduction factor was introduced.

The expected fatigue damage is plotted in Figure 17 versus
the iaroduct of E[M;]t . A value of E[D(T)]}]=0.1 corresponds to 10
percent damage and E[D(t)]l=1 a 100 percent damege or total
failure of the structure. By selecting Z[D(T)]=1 and the calcu-
lated value of the total number of peaks F[M;] , the time to
failure can be obtained from Figure 17. These results are given
in Table 2.

TABLE 2

STANDARD DEVIATION OF o,, STRESS,
EXPECTED NUMBER OF PEAKS AND FATIGUE LIFE

Number of Standard Fatigue
Peaks/Second Deviation, psi Life, Hours
Input Sound
Pressure, dB | Linear j Nonlinear | Linear | Nonlinear Linear Nonlinear
120 (147) 124 150 2,676 2,29(;‘“7 2.39 x 108 938,888
130 (157) 124 228 8,462 3,697 2,393 16,578
140 (167) 124 556 26,760 9,260 2.393 18.7
160 (177) 124 748 84,622 14,100 —-— 1.0
o e

( ) = Overall levels

When the stress response analysis is performed using a linear

plate theory, the stresses can be calculated by the PSD method
and the expected fatigue damage estimated from Equation 86. The
results based on linear theory are also presented in Table 2.

These results indicate that for input levels above 120 dB (147 dB

overall) the linear theory over estimates stress and under esti-
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mates fatigue life of shrface panels. For sound pressure inputs
of 120 dB or lower, the titanium panel would not fail by fatigue.
Tk fatigue life estimates presented in this report should be
viewed as preliminary merely to illustrate the procedure of the
time domain analysis.

B. PREDICTION OF RESPONSE IN ORTHOTROPIC COMPOSITE PANELS USING
THE TIME DOMAIN METHOD

"In this pection, representative examples of the predictive
capabilities of the time domain approach for application to
orthotropic panels is presented. For the most part, the examples
provided are analogous to those shown for the isotropic panel of
Section III A. However, examples showing the effects of varia-
tion in lay-up angle have been included to demonstrate the
design/analysis capabilities of the time domain approach.

A subtle but important distinction between an orthotropic and
laminated composite material should be noted; namely, for pur-
poses of this Phase I research, the orthotropic derivation
implicitly assumes that the entire plate is composed of a single
material possessing orthotropic properties, as contrasted to a
laminated panel wherein orthotropic properties generally vary
throughout the thickness. This assumption presents no problem
with respect to the calculation of displacement response time
histories and statistics since the constitutive properties of the
chosen orthotropic material (A.;y A1z Azzs Ay Dy Dizy Daay and
D) have been obtained from the equations used to obtain consti-
tutive properties of a laminated composite structure.

Derivation of stresses within an orthotropic or laminated
composite panel are different, however. An orthotropic material
has a membrane stress field which is constant through the thick-
ness. The bending stresses vary linearly through the thickness
with the Btress being zero at the location of the neutral axis.
Thus, for an orthotropic material, the total stress is gimply a
function of the through-thickness coordinate of the panel. For a

laminated composite material, the gtress is a function of the
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material properties of the particular lamina; Since; in general,
lamina lay-up angles vary throughout the thickness,.a laminated
composite requires stress-displacement relations which depend
both upon the through-thickness location of the lamina and the
constitutive properties of the lamina.

Figure 18 shows an example of the stress and strain distribu-
tion through the thickness of a laminated composite. 'Note that
the membrane strain field is constant in value and the bending
strains vary linearly with through-thickness position. The
stresses vary according to the lamina constitutive properties and
are neither constant nor linear. The &tress distribution for an
orthotropic material would be similar to the strain distributions
shown in Figure 18, i.e., membrane stress is constant and the
bending stress is linear through the thickness.

For this research, the simpler orthotropic stress-
displacemen:. relnt.ions have been used inasmuch as demonstration
of the feasibility of the time domain apprcach was the primary
objective., During Phase II the relations for a laminated compos-
ite material will be implemented.

The panel shown in Figure 1 represented the basic configura-
tion used for the orthotropic analysis shown herein. As before,
the lower and upper cut-off frequencies are 0 and 500 Hz, respec-
tively. The duration of the simulated process is 1.024 sec. The
first laminated composite example is composed of the lay-up
[0/+45/-45/90], for a total of eight layers and an overall thick-
ness of 0.0416 inches. Each layer is made from 4~8/3501 Graphi-
te/Epoxy. The basic lamina constitutive properties are obtained

from the 0-degree lamina elastic properties, i.e.,

E,=18.6F+06
E,= 2.0E+06
Gu= O0.BE+06
Ve= 0.31
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The numerical results were obtained for a panel with overall
dimensions of a = 20.0 inches, ¥ = 8.2 inches, p, = 0.0001302
lb;-sec?/in*. The material demping factor was §, = 0.06. The cal-
culated modal frequencies were

fus= 133 cycles/sec
fua = 466 cycles/sec
fia = 1,021 cycles/sec
fa = 200 cycles/sec
faz = 533 cycles/sec
fza = 1,088 cycles/sec
fa = 313 cycles/sec
fa = 644 cycles/sec
faa= 1,199 cycles/sec

Ag anh example of the importance of the assumption of linear-
ity or nonlinearity with respect to the strain-displacement rela-
tione, Figures 19 and 20 show the effect of the two assumptions.
Figure 19, the linear response, shows a maximum displacement of
almost 4 inches, whereas the nonlinear response provides only 0.3
inches approximately. The difference is dramatic with the non-
linear resaponse obviously the more realistic.

In the response histories shown, the limitations in the
graphical display device alluwed only 240 discrete points of dis-
placement and time to be plotted. Thus, a separate program was
written to take the time history produced by TDR, containing
4,096 discrete points, and reduce it to the first 240 minimum and
maximum points. As a result, the time histories shown appear
glightly different than those prepared for the isotropic panel.

In comparing Figures 19 and 20, it is also observed that
there are apparently more variations between high and low values
for the nonlinear response because 7240 points of minimum/maximum
appear in just 0.24 seconds for the nonlinear case as contrasted
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to about 0.63 seconds for the linear case. The indication that a
nonlinear response produces more changes in stress direction
could have important implications in the determination of panel
fatigue life and is one more reason why the nonlinear assumption

is preferred over that of linear.

The time histories of the lateral component of stress, o, ,

for both the linear and nonlinear cases are shown in Figures 21
and 22, respectively. Asg with the displacement response, the
iinear prediction provides unrealistic values, whereas the non-
linear assumption results in the calculation of stress values
that are comparable to the actual expected response of the panel.
Note also that the mean value for the nonlinear assumption is not
zero., Clearly, the use of linear strain-~displacement relations
is not warranted for applications involving high levels of acous-
tic loading.

Displacement and stress response probability density histo-
grams, peak distributions, total number of peaks per unit time,
and threshold crossing rates can be obtained from the response
time histories. Figures 23 and 24 show the probability density
histograms for two different sound pressure levels (130 and 150
dB) using nonlinear strain-displacement relations. For compari-
son, a Gaussian density function is given with each probability
density histogram. The nonlinear response is no longer Gauss;an.

Figures 25 and 26 show the peak distribution histogram for
the nonlinear strain~displacement relations compared tc a Ray-
leigh distribution. The nonlinear prediction does not follow the
Rayleigh distribution.

Similar histograms of probability density sand peak distribu-
tion for the lateral stress component, o, , are shown in Figures
27-30., As for the isotropic panel, large differences between the
response histograms and the theoretical probability and peak dis-
tributions can be seen. These large differences are produced by
the nonlinear relationship between stress and displacement and

are additional confirmation that the assumption of linearity in
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strain-displacement relations is not appropriate for the predic-

tion of stress response in panels subject to high levels of
acoystic noise.

Figure 31 shows up~crossings per second for ¢, for various
levels of sound pressure level. For the lower sound pressure
level (i.e., 110 dB) the response ig mostly linear; however, for
higher levels of input the response is increasingly nonlinear and

" the up-crossing rate increases markedly.

When the basic lay-up Jjust used is varied slightly, it is
possible to alter the response of the panel, As an example,
Figure 32 shows the o, RMS response of the panel for 160 dB input
when the lay-up angle of the interlior plies are varied from 0
through 90 degrees. At approximately 30 degrees the RMS response
is at & minimum. Figure 33 shows how the up-crossing rate varies
with lay-up angle--apparently, the up~crossing rate is not
strongly dependent on the lay-up angle for this particular lami-
nated composite example,

As a final example of the usage of the time domain approach,
another laminate construction is examined. Figures 34 and 35
show the up-crossing rate for stress components o,, and o,, for a
[+6/-0],;, laminate. The effect of lay-up angle on response is of
importance in these examples. A designer, knowing that the
luy-up engle would have an effect on panel response, could poten-
tially alter the design in such & manner that the RMS stresses
and up-crossing rates would be reduced and fatigue life
increased.

Figure 35 shows the RMS stresses for fiber directed and
transverse stresses as a function of the lay-up angle. The fiber
direction stresses are relatively low in this example, approxi-
mately 15,000 psi, when compared to a nominal allowable of
180,000 psi. However, in the transverse to fiber direction the
stress level peaks at about 6,300 psi, which is very close to the
static stress allowable for the matrix material. In an actual
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design situation, the panel would need sizing to ensure that the
anticipated stress level is below the allowable fatigue stress
level for the matrix material.

Prediction of fatigue life in composite materials is not pos-
sible at this time because of limitations in the theoretical
understanding of fatigue in comporites and the lack of material
property data. As a consequence, predictions of sonic fatigue
life for a composite panel have not been produced. However, the
statistical approach documented for metal panels and the tech-
niques used to produce predictions based on time domain response
analysis are valid and can be utilized when polymer-based compos-
ite technology advances. Phase II work will develop the time
domain response methods for laminated composite materials to the
maximum extent possible. Also, Phase II work will concentrate on
the appropriate theoretical relationship to be used to predict
composite fatigue. The ability to predict acoustically generated
stresses combined with an approach for predicting fatigue of com-
ials will allow an analyst the ability to use the
time domein approach to predict the sonic fatigue life of struc-
tural panels:.
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CONCLUSIONS

A simple rectangular panel was selected to demonstrate the
applicability of time domain analysis to predict nonlinear
response and fatigue life of metal and composite panels. It is
shown that the linear theory overestimates deflection and stress
response by a large amount, resulting in a predicted shorter
fatigue life. If one were to use linear theory as a design tool,
then properly designed panels would be relatively stiffer and
heavier than required. A non-optimal, weight-inefficient struc-
ture would result.

The nonlinear response, as predicted by the Monte Carlo time
domain approach, is non-Gaussian and peaks do not follow a Ray-
leigh distribution. With & nonlinear relationship between stress
and displacement, both the probability density function and the
peak diatribution of displacement response process are signifi-
cantly different from those of the linear stress response.

The number of stress peaks per unit time and the up-c¢rossing
rates increase with the increase of input sound pressure levels
as would be expected; however, the nonlinear stress response has
& mean value while the mean value for the nonlinear displacement
response is zero.

The spectral densities of the nonlinear response show a wid-
ening of response peaks and a shift towards higher frequencies as
the input levels increase and the nonlinearity effects become
more dominant.

The time domain analysis presentgd in this study indicates
that for anticipated sound pressure levels acting on present and
future aircraft structures, the various simplified linear theo-
ries used to predict stress response and fatigue life would not
produce rcalistic structural panel configurations. The rather
dramatic differences between linear and nonlinear predictions is
significant and, thus, is a reminder that structures exposed to

acoustic noise must be carefully designed.

57




10.

REFEKRENCES

Jacobson, M. J., "Advanced Composite Joints: Design and
Acoustic Fatigue Characteristics," AFFDL-TR-71-126, Air
Force Flight Dynamics Laboratory, Wright-Patterson Air Force
Base, Ohio, 1972.

Holehouse, I., "Sonic Fatigue Design Techniques for Advanced
Composite Aircraft Structures," AFWAL-TR-80-30192. Air Force
Wright Aeronautical Laboratories, Wright-Patterson Air Force
Base, Ohio, April 1980,

Soovere, J., "Effect of Acoustic, Thermal and Shear Loading
on Flat Integrally Stiffened Graphite/Epoxy Fuselage
Panels," NADC-78169-60, 1982.

Soovere, J., "Dynamic Response and Acoustic Fatigue of
Stiffened Composite Structures," The Second international
Conference on Recent Advances in Structural Dynamics,
Southampton, England, 1984.

Rudder, F. F., Jr. and Plumblee, H. E., Jr., "Sonic Fatigue
Design Guide for Military Aircraft," AFFDL-TR-74-112, Air
Force Flight Dynamics Laboratory, Wright-Patterson Air Force
Base, Ohio, May 1975.

Powell, A., "On the Fatigue Failure of Structures due to
Vibration Excited by Random Pressure Fields," Journal of the
Acoustic Society of America, Vol. 30, 1958, pp. 1130-1135.

Maestrello, L., "Radiation from and Panel Response to &
Supersonic Turbulent Boundary Layer," Journal of Sound and
Vibration, Vol., 10, No. 2, 1969, pp. 261-295.

Jacobson, M. J. and Maurer, O. F., "0il Canning of Metallic
Panels in Thermal-Acoustic Environments," AIAA 6th Aircraf"
Design, Flight Test and Operation Meeting, AIAA Paper

No. 74-982, Los Angeles, California, August 12-14, 1974.

Coe, C. F, and Chyu, W. J., "Pressure Fluctuation Inputs and
Response of FPanels Underiying Attached and Separated Super-
sonic Turbulent Boundary Layers," NASA TM X-62, 189, 1972,

Dowell, E. H., "Transmission of Noise from a Turbulent
Boundary Layer Through a Flexible Plate into a Closed
Cavity," Journal of the Acoustic Society of America,
Vol. 46, No. 1, July 1969, pp. 238-252.

58




%

L NP -

&

N

i T

B

.
"
4

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

Vaicaitis, R., Jan, C. M., and Shinogzuka, M., "Nonlinear
Panel Response and Noise Transmissions from a Turbulent
Boundary Layer by Monte Carlo Approach,” AIAA Paper

No. 72-199, AIAA 10th Aerospace Science Meceting, San Diego,
California, January 17-19, 1972.

Ng, C. F., "The Influence of Snap-through Motion on the
Random Response of Curved Panels to Intense Acoustic Excita-
tion," Proceedings of the Third International Conference on
Recent Advances in Structural Dynamics, AFWAL-TR-88-3034,
July 1988.

Maekawa, F., "On the Sonic Fatigue Life Estimation of Skin
Structures at Room and Elevated Temperatures," Journal of
Sound and Vibration, 80(1\, 1982, pp. 41-59.

Crandall, S. H. and Zhu, W. Q., "Random Vibration: A Survey
of Recent Developments," Journal ot Applied Mechanics, ASME,
Vol. 50, December 1983, pp. 9563-962.

To, C. W. S., "The Response of Nonlinear Structures to
Randon Excitation," The Shock and Vibration Digest, Vol. 16,
No. 4, April 1984. PP. 13-330

Caughey, T. K., "Derivation and Application of the Fokker-
Plank Equation to Discrete Nonlinear ynamic Systems
Subjected to White Random Excitetion," Journal of the
Acoustical Society of America, Vul. 35, Novembar 1963,

rp. 1683-1692,

Iwan, W. D. "Application of Nonlinear Analysis Techniques,"
Applied Mechanics in Earthquake Engineering, Edited by W. D.
Iwan, ASME AMD-Vol. 8, 1974, pp. 135-161.

Crandall, S. H., "Perturbation Techniques for Random Vibra-
tion of .lonlinear Systems," Journal of the Acoustic Society
of America, Vol. 356, November 1963, pp. 1700-1705,.

Anand, G. V. and Richard, K., "Nonlinear Response of String
to Random Excitation," International Journal of Nonlinear
Mechanics, Vol. 9, 1974, pp. 251-260.

Iwan, W. D. and Yang, I. M., "Statistical Linearization for
Nonlinear Structure," Journal of Engineerirg Mechanics
Divigsion, ASCE, Vol. 97, No. EM6, 1971, pp. 1609-1623.

Spanos, P-T. D., "Formulation of Stochastic Linearigation
for Symmetric or Asymmetric M. D. O. F. Nonlinear Systems,"
Journal of Applied Mechanics, ASME, Vol. 47, 1980,

PP. 209-2110

69




&

22.

23.

24.

25.

26.

21.

28.

29.

30.

31,

32,

33.

34.

Spanos, P-T., D., "Stocnastic Linearization in Structural
Dynamics," Applied Mechanics Review, Vol. 34, No. 1,
Janua,y 1981, pp. 1-8.

Shinczuka, M., "Monte Carlo Solution of Structural Dyna-
mics," International Journal of Computers and Structure,
Vol. 2, 192, pp. 855-874.

Vaicaitis, R., Dowell, E. H., and Ventres, C. S., "Nonlinear
Panel Response by a Monte Carlo Approach," AIAA Journal,
VOIA 12' NO. 5. May 1974, ppo 685-6910

Vaicaitis, R., "Nonlinear Panel Response to Non-stationary
Wind Forces," Journal of the Engineering Mechanics Division,
ASCE. VQlt 101. NO. 4’ August 1975, PP 333"3470

Mixon, J. S. and Roussos, L. A., "Acoustic Fatigue: Over-
view of Activities at NASA Langley," NASA TM-89143, 1987.

Bruhn, E. F., Analysis and Design of Flight Vehicle
Structures, Tri-State Offset Co., Ohio, 1965.

Vaicaitis, R. and Choi, S. T., "Sonic Fatigue and Nonlinear
Response of Stiffened Panels," AIAA 12th Aeronautics
Conference, San Antonio, Texas, April 10-12, 1989.

Cockburn, J. A. and Jolly, A. C., "Structural-Acoustic
Response, Noise Transmission Losses and Interior Noise
Levels of an Aircraft Fuselage Excited by Raudom Pressure
Fieldes," AFFDL-TR-68-2, Air Force Flight Dynamics Labora-
tory, Wright-Patterson Air Force Base, Ohio, August 1968.

Ojalvo, I. U., Levy, A., and Austin, F., "Thermel Stress
Analysis of Reusable Insulation for Shuttle," NASA CR-
132502, 19174.

Vaicaitis, R., "Generalized Random Forces for Rectangular
Panels," AIAA Journal, Vol. 11, No. 7, July 1973,
PP. 984"9880

Shinozuka, M. (Editor), Stochastic Mechanics, Vol. I and II,
Dept. of Civil Engineering and Engineering Mechanics,
Columbia University, New York, New York, 1987.

Ambartsumyan, S. A., Theory of Anisotropic Plates, Progress
in Materials Science Series, Volume II, J, E. Ashton, Ed.,
Technomic Publication Co., Inc., Stamford, Connecticut,
1970.

Boley, B. A, and Wiener, J. H., Theory of Thermal Stresses,
John Wiley and Sons, New York, 1966.

60




o i

35.

36.

37.

38,

39.

40.

41.

42.

43.

44.

45.

46.

Bolotin, V. V., Nonconservative Problems of the Theory of
Elastic Stability, Pergamon Press, Oxford, 1963.

Hong, H. K. and Vaicaitis, R., "Nonlinear Response of Double
Wall Sandwich Panels," Journal of Structural Mechanics,
12(4), (84-85), pp. 483-503.

Vaicaitis, R.;, "Acoustic Fatigue -- A Monte Carlo Approach,"
AIAA/ASME/ASCE/AHS 28th SDM Conference, Paper No. 87-0916,
Monterey, Califormnia, April 6-8, 1987.

Vaicaitis, R. and Choi, S., "Response of Stiffened Panels
for Application to Acoustic Fatigue," AIAA 11th Aeroacous-
tics Conference, Paper No. 87-2711, Sunnyvale, California,
October 19-21, 1987.

Vaicaitis, R. and Chei, S., "Acoustic Fatigue of Stiffened
Structures," Proceedings of the Third Conference on Recent
Advances in Structural Dynamics, Southampton, England, 1988.

Vaicaitis, R. and Choi, 8. T., "Sonic Fatigue of Stiffened
Structures," 29th AIAA/ASME/ASCE/AHS SDM Conference,
Williamsburg, Virginia, 1988.

Vaicaitis, R. and Choi, S. T., "Acoustic Fatigue of
Stiffened Structurcs," Proceedings of the Third Interna-
tional Conference on Recent Advances in Structural Dynamics,
University of Southampton, England, July 18-22, 1988.

Vaicaitis, R. and Choi, S. T., "Nonlinear Response and
Fatigue of Stiffened Panels," Symposium on S*tochastic Struc-
tural Dynamics, University of Illinois at Urt..una-Champaign,
October 30~November 1, 1988.

Lin, Y. K., Probabilistic " eory of Structural Dynamics,
McGraw-Hill, New York, 19

Miner, M. A., "Cumulative Damage in Fatigue," Journal of
Applied Mechanics, Transactions of the ASME, Vol. 12, 1945,
PP« A159"A1 64 .

Nayfeh, A. H. and Mook, T. D., Nonlinear Oscillations, John
Wiley and Sons, New York, 1%79.

Shinozuka, M., Vaicaitis, R., Chang, J. B., Engle, B., and
Ishikawa, M., "Equivalent Load Spectra for Fatigue Crack
Growth Prediction," 1982 Symposium on Reliability of
Structures, ASCE, New Orleans, Louisianea.

61




FIGURES

62

N



h ,
A Y y

'\\\’\\\\\\\\\\\\\\\\\\\\\\\\\‘\\‘5"f

| i —
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RMS STRESS (YY) AS A FUNCTION OF ANGLE
LAMINATE [0/+THETA/-THETA/90} SYMM.

RMS STRESS (YY) (Thousands)

10

9 -

Bﬂ_ | >/'

TIME DOMAIN METHOD
—O— 160 dB NONLINEAR

0 | 1
0 16 30 45 80 75 90

ANGLE THETA (Degrees)

Figure 32 RMS of o

vy as a Function of Lay-Up Angle
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. RMS STRESSES AS A FUNCTION OF ANGLE
LAMINATE [+THETA/~THETAIx2 SYMMETRIC

a 16 RMS STRESS (Thousands)

15 \ 160 dB NONLINEAR

‘h 14 \ -0~ STRESS-FIBZR

13 \9 : —— STRESS-TRANSVERSE
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2
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.
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| i i
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ANGLE THETA (Degrees)

Figure 36 RMS of oy, o, as a Function of Lay-Up Angle, [+°/°°]x25
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APPENDIX A
LISTING OF COMPUTER PROGRAM TDR

3111212212 12237 TTATTTIZITIIZTRITE LR T PRSI TR 3TRZIRZILR2 22272 22 2 2223 23 12

Ckk% kkk%

CRXkE TDR p2 T

g v Chx¥x k%

ChAE% TIME DOMAIN RESPONSE ANALYSIS OF A SIMPLY SUPPORTED PLATE kKK

L Chkxx SUBJECTED TO UNIFORM RANDOM PRESSURE AND THERMAL LOAD *kkk

e Chkkx *kkk

| CR¥x% BASED ON THE WORK OF RIMAS VAICAITIS OF COLUMBIA UNIVERSITY  **¥x

R ChE*% AND S. T. CHOI (RESEARCH ASSISTANT), 1988-89 *kRK

L Ckkkk ) %%
' ; C¥kkk MODIFIED TO INCLUDE ORTHOTROPIC MATERIALS BY ROCKY ARNOLD, L33 2 ;
| CHkxx ANAMET LABCRATORIES, INC., 1989 *REE 1

E CkkE% xuky

o CRERERRERRLRCKKERERERLEREXEERREERERERRRREREEERKRRRRREERRRRERERRRRREREERERRRKEK
! CkkE% *kkk ;

Ck¥*x SIMPLY-SUPPORTED SINGLE PANEL SUBJECTE) TO UNIFORM RANDOM *kkx
Chikk PRESSURE AND THERMAL LUADS. *kk¥ ‘

ChkEs thkk

Chxkk THIS PROGRAM IS USED TO FIND THE DISPLACEMENT AND STRESS *EX¥

Ckx** RESPONSE TIME HISTORIES FOR A SIMPLY SUPPORTED PANEL USING xEE%

Ckx¥x MODAL ANALYSIS IN THE TIME DOMAIN WITH NMODEX MODES IN THE L 12 2

CE¥E% X-PIRECTION AND NOMODFY MODES IN THE Y-DIRECTION. L2233

CR¥E% xkkk

. Cx&¥% LOADIKG IS UNIFORM AND TEMPERATURE DISTRIBUTION IS ASSUMED k%

- C¥¥xk  UNIFORM. e T

T Ckkkk *kk¥

:J ' Ck*%%  PARAMETERS KRk

oL ; Cki¥x NX = MAXIMUM NO. OF MODES IN X-DIRECTION xkkk

g Ck¥kk NY = MAXIMUM NO. OF MODES IN Y-DIRECTION hkx%

Chxk% NXY NX ¥ NY *kE%

CEX%x% NTEQ MAXIMUM TOTAL NUMBER OF EQUATIONS (=2#¥NXY) L33 23

Chkkxk NSTEPT = MAXIMUM NO. O TIME STEPS t3 333

CHxkx NMODEX
Ck*x NMODEX

ACTUAL NO. CF MODES IN X-DIRECTION USED IN ANALYSIS - **¥x
ACTUAL NO. OF MODES IN Y-DIRECTION USED IN ANALYSIS  #%%%

FEL I T £ L I N IO £ I [

;:éﬁ Chkx¥¥ RMSD ROOT MEAN SQUARE OF DISPLACEMENT RESPONSE *kk%
S Ckkk¥ RMSX ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(X) kkEx
o CkEk* RMSY ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(Y) k¥
fg" ' Chkkk RMSXY ROOT MEAN SQUARE OF STRESS RESPONSE SIGMA(XY) k%
ﬁ CHx%* RLOAD GAUSSIAN RANDOM PRESSURE k%
Cxix¥k FREX¥

Chrkxkkkkikkkkkkkkkkkikkkrkkkkirkekirkikkrkkrkkkkiktrikkkrkrkikkikikikgikrkkkk
IMPLICIT REAL*8 (A-H,0-Z) |
PARAMETER (MXPARM=50, NX=3, NY=3, NXY=9, NTEQ=18, NSTEPT=8192)
DIMENSION A{NX,NY),PARAM(MXPARM),Z(NTEQ),ZETAIJ(NX,NY),
1 VIJMN(NX,NY,NX,NY),ZNTIJ (NX,NY),CO(NX,NY), |
2 WIJ/.iX,NY),ZIJKLMNRS(NXY,NXY,NXY,NXY),QIJ(NX,NY),
e 3 WIJ2(NX,NY) |
e DIMENSION YR(18),DYR(18),Y1R(18),Y2R(18),Y3R(18)

s
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Cm M,

REAL*4 TIME(10)

COMMON /COMO/ XL,YL,V,ZETAll

COMMON /COM1/ QIJ,WI1J2,CO

COMMON /COM2/ XYL,I,J,K,L

COMMON /COM3/ NMODEX ,NMODEY , NMODEXY,NDIMX,NDIMY,NDIMXY,ILIN

COMMON /COM4/ VIJMN,ZIJKLMNRS

COMMON /COM5/ IHEAT,ZNTIJ

COMMCN /RNG/ NR,XR,YR,DYR,HH,JR,JMAX,MR,XOUT, IFREQ,X1R,X2R,X3R,

1 Y1R,Y2R,Y3R,TOL

COMMON /XFER/ ISTEP,DSTEP,DDT,RLOAD(8192)

COMMON/ PROPS/ Al11,A12,A22,A66,H,T1,T2,T3

DATA NDIMX,NDIMY,NDIMXY/3,3,9/
CHEERRRRXRERKERKERRRERERLERERRRREFEEERERREERERRRRR KRR R LRRRE R R KRR KRRk EK
C¥*%x READ IN INPUT DATA kXK
CHERERFRRKRRRKEFRKKERFERERRKRRRRERERRRKKEXRFEEXERERREEERRTRRRER RN KRR R KRR K

TIME(1)=SECNDS(0.)

CALL READ(X,Y,DSTEP,NSTEP,NEQ,PI,WI1J,PQ1,C1,C2,C3,C4,

1 PX,PY,XYL,XL2,YL2,VIJMN, ZIJKLMNRS , IHEAT, ZNT1J,

2 STHERX, STHERY, SPL)

TIME(2)=SECNDS(TIME(1))+TIME(1)

NR=NEQ
Chikkkkkkikikikkiiikkikkrkkirkiiikikikkkkkkkkkwkkkkkkrkkekkrhkkkikkrrkrikkk
C#%%* CALL ROUTINE TO CALCULATE TIME DOMAIN SIMULATION OF PRESSURE *hkk

CRexkkkRikkbkRbkkkbRRERkbRkRERRRRELRRRRERRFR KRR KRR KRR KRRk Rk ke ke ek k ko

TIME(3)=SECNDS(TIME(2) )+TIME(2)

CALL SIMLOAD(SPL)

TIME(4)=SECNDS(TIME(3))+TIME(3)
Chkkkkkkkkkkkrkiokkkkkkikkkkiobkkkkiokikiorkkpkbikkkk ik oskekkpkkkkkkkikksskkkkkk
C***x INITIALIZE S'MMING PARAMETERS L2 22
CHEkkkkkkkkkkikkykolkkkkkkiikikokrkkkkikk ki kkkkkkrikrkkkirkkpkiknkikkeikbikkk

SUMD=0.0

SUMD2=0.0

SUMX=0.0

SUMX2=0.0

SUMY=0.0

SUMY2=0.0

SUMXY=0.0

SUMXY2=0.0

T=0.0

XR=T
CERERRERRERRRRRREKRRRERRRERERRARK R KA Rk Kk ok kA Aok ok k ok ok sk ok ok ok ok ok ok ook ok ok
C#x¥* COMPUTE DAMPING TERM ) L2 2
Ch¥fkkkkkkkkikkkkkkkkrkikkkkkkkkkrkkkkkkkirkkkkkkirkrkkkikkkrkkkkkikekhkrkris

DO 5 I=1,NMODEX

DO 5 J=1,NMODEY

ZETAIJ(1,J)=ZETA11*(WIJ(1,1)/WIJ(1,J))
CO(1,J)=2,*%ZETAIJ(I,J)*W1J(I,J)
WIJ2(1,J)=WIJ(I,J)*WIJ(I,J)
5 CONTINUE
CEXERRKRKREXRERKREREXREREXRERREERRERERERRERRRR R KK R KR KRR R KRR RRERR KK RFR R K EXK
C¥:¥* COMPUTE PRESSURE TERM LRSS
C? BREKRRRRBERFREXRKRERERERXKERRERERRKREBERERRKEKREKRERLERERERERREERRRN KR KRR R RRX*
DO 20 I=1,NMODEX
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DO 20 J=1,NMODEY
QIJ(1,J)=PQ1/I/J%(i~(-1)%*1)*(1~(~1)*¥*J)
20 CONTINUE
T T S T R T T B e T T TR T R SR s R T SR
C*¥+*x SOLVE PDEs FOR DISPLACEMENT *¥¥%
(L T e s T L e S T T R R T TR R R TR SRR SRR R A S AR BT 2 TS 2R
TIME(5)=SECNDS(TIME(4) )+TIME(4)
DO 10 ISTEP=1,NSTEP
TEND = FLOAT(ISTEP)*DSTEP
HH=DMIN1(DSTEP,DDT)*0.125
XOUT=TEND
CALL RUNGE
DG 30 I=1,NMODEX
DO 30 J=1,NMODEY
K=(I-1)*NMODEY+J
A(I,J)=YR(K)

30 CONTINUE
(op 223330 +3 3232323833 2333333333333 333333223433 33 3333332233232+ 333332 32222331
Cx*%* COMPUTE STRESS RESPONSE xkkk
CxkkxkkkkkkkkkikkkkikiikkkikRieikkiibikkikkkkklkkkikkikkkkkkkrkbrkrkikkbrdsk
'=XR
TD=DSTEP

CALL RESPON(A,XL,YL,ISTEP,TD,C1,C2,C3,C4,PX,PY,XYL, IHEAT,
1 STHERX, STHERY , SUMD , SUMD2 , SUMX , SUMX 2, SUMY , SUMY2,
2 SUMXY , SUMXY2)
10 CONTINUE :
TIME(6)=SECNDS(TIME(5) )+TIME(5)
(22333 33PN 222332233732 23 23222233 P332 2323233333322 43332322 2233333432323 23
C#*%%x COMPUTE MEAN, MEAN SQUARE AND RMS VALUES *kkk
Chkkkkkkkkkkkbkgkekkrkkikekkkbrhkkikkkikkkkkkkiokkpkrkkrkikrkkiikkkkkkkkikkkk
SUMD=SUMD/FLOAT ( NSTEP)
SUMD2=SUMD2/FLOAT (NSTEP)
RMSD=DSQRT ( SUMD2)
SUMX=SUMX/FLOAT(NSTEP)
SUMX2=SUMX2/FLOAT (NSTEP)
RMSX=DSQRT ( SUMX2)
SUMY=SUMY /FLOAT (NSTEP)
SUMY2=SUMY2/FLOAT(NSTEP)
RMSY=DSQRT ( SUMY2)
SUMXY=SUMXY/FLOAT(NSTEP)
SUMXY2=SUMXY2/FLOAT (NSTEP)
RMSXY=DSQRT( SUMXY2)
Cdede ok ok o 3ok Sk ok o ok e ke o o o o ok ok ok o o e o e e sk e ok s s o o s ke e el ke ok ok ol sk ok ok ok sk sl ook ok ol sk skok sk ok ek ok o ook
Cx*%%x  WRITE OUT SIMPLE STATISTICS OF TIME DOMAIN RESPONSE KAk
CERirrkkkkrkkkrpkkkkrikkkkkbiRkhiikkkkkkkkkkkrkrkkkikkkikirrkkikkikkikkikkrrs
WRITE(6,1000) SUMD, SUMD2, RMSD
WRITE(6,1003) SUMX, SUMX2, RMSX
WRITE(6,1004) SUMY, SUMY2, RMSY
c WRITE(6,1005) SUMXY, SUMXY2, RMSXY
1000 FORMAT(’ Displ. (in): Mean = ®,E11.4,’  M.8.= ',E11.4,

+ ' RMS = ,’E11i4)
1003 FORMAT(’ sigmaX (psi): Mean = ',E11.4,’ M.S.= ',E11.4,
+ ' RMS = ’,E11.4)

101




1004 FORMAT(® sigmaY (psi): Mean = *,El1.4,° M.S.= ’,E11.4,
]

+ RMS = ’,E11.4)
c1005 FORMAT(’ tauXY (psi): Mean = ’,El1.4,° M.S.= ',E11.4,
c + f RMS = ',E11.4)
C*%

PRINT 1100

1100 FORMAT(/,’ Output files FOR008: Response histories’,//)
TIME(7)=SECNDS(TIME(6) )+TIME(6)
CEEERRKEREERERFLRRERRFRREERERRERRREREREEREEERERERERRRE R KRR R SRR IRk Rk k%
COkkk% PRINT OUT TIME SUMMARY L2 2 2
CRERRARKERRERELERRLRLERERRERRERBERRKKRREEEEKKERKXERERREXKERXREEERUERRKKAEK XK KKK
WRITE(6,9999)
9999 FORMAT(///,X,’SUMMARY OF TIME EXPENDITURES’,/)
WRITE(6,9998) TIME(2)-TIME(1)
9998 FORMAT(/,X,’TIME IN READ SUBROUTINE= ’,F8.1,' SECONDS’)
WRITE(6,9997) TIME(3)-TIME(2)
9997 FORMAT(/,X,'TIME BETWEEN READ AND SIMLOAD SUBROUTINES= ’,F8.1,
1 ' SECONDS’)
WRITE(6,9996) TIME(4)-TIME(3)
9996 FKFORMAT(/,X,’TIME IN SIMLOAD SUBROUTINE= ’,F8.1,' SECONDS’)
WRITE(6,9995) TIME(5)-TIME(4)
0995 FORMAT{/,X,’TIME BETWEEN SIMLOAD AND RUNGE SUBROUTINES= ’,F8.1,
1 ' SECONDS’)
WRITE(6,9994) TIME(6)-TIME(5)
9994 FORMAT(/,X,’'TIME IN RUNGE SUBROUTINE= ’',F8.1,' SECONDS’)
WRITF(5,9993) TIME(7)-TIME(6)
9992 FORMAT(/,X,’TIME BETWEEN RUNGE AND FROGRAM END= ’,F8.1,
1 ' SECONDS’)
STOP
END
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C#t*#****#***#*‘*******t******#*#**t*#**8**#*#******#******t*#*#*#*t****t#*#*

Chink TT L
Chi% TJKL xkkd
Cexkk ks

CREXERARFRERRBERERREEERSERRREERELRKKERERERERUEEEREL KL ELXRERRERXEEREI AR ETLRREER

SUBROUTINE IJKLMNRS(VIJMN,ZIJKLMNRS,ZNT1J,P2,P3,P4X,P4Y,

1 XL2,YL2,1HEAT)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /COM2/ XYL,I,J,K;L

COMMON /COM3/ WMODEX,NMODEY,NMODEXY,NDIMX,NDIMY,NDIMXY,ILIN
COMMON /PROPS/ Al11,A12.A22,A66,H,T1,72,T3

DIMENSION VIJMN(NDIMX NDIMY ,NDIMX,NDINY), ZNTIJ(NDIMX,NDIMY),

1 ZYJKLMNRS(NDIMXY,NDIMXY,NDIMXY,NDIMXY)
C**#***t*****#*****t*#*t****t*****#t*******#*****#**#*******************#****
C¥x¥x COMPUTE LINEAR (HOMOGENEOUS) COMPONENT OF AIRY STRESS FUNCTION kkk¥
(1213333233233 3 23333333332 333 6323333324343 3332234432332 3323 3¢ 2234333232232

DO 10 1=1,NMODEX
CI2XL2=I%1/XL2
DO 10 J=1,NMODEY
CJ2YL2=J%J/YL2
DO 10 M=1,NMODEX
CM2XL2=M*M/XL2
DO 10 N=1,NMODEY
CN2YL2=N*N/YL2
VIJMN(I,J,M,N)=P2%(CI2XL2%(T1¥CM2XL2+T2%CN2YL2)
1 +CJ2YL2%* (T2*CM2XL2+T3%CN2YL2))
10 CONTINUE
IF(ILIN .EQ. 0) GG TO 20
CRERRRERERAKREEZRERERELERREXERARRERERRRREEEXEREEEReRRERERE R kR R kR Rk kR Rk kg kkkk
Ck¥%% COMPUTE NONLINEAR (P, RTICULAR) COMPOKENT OF AIRY STRES FUNCTION  #*¥¥x%
C#**#*******##***#*#*#*****;*#*#***********#*******#********#*******#**t*****
DO 15 I=1,NMODEX
DO 15 J=1,NMODEY
1J=(1-1)%®NMODEY+J
DO 15 K=1,NMODEX
DO 15 L=1,NMODEY
KL=(K-1)*NMODEY+L
DO 15 M=1,NMODEX
DO 15 N=1,NMODEY
MN=(M-1 )*NMODEY+N
DO 15 IR=1,NMODEX
MPR=M4+IR
MMR=M-IR
DO 15 18=1,NMODEY
IRS=(IR-1)*NMODEY+IS

NPS=N+1S

NMS=N-I8

NR=N*IR

MS=M*IS

ZIJKLMNRS(IJ,KL,MN,IRS) = P3 *
1 (MS*(NR—HS)*(FIJ(MPR,NPS)+FIJBAR(MMR NMS) )+
2 MS* (NR+MS )*(F1J (MMR,NPS)+F1J (MPR,NMS)))

15 CONTINUE
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CHRERERRERKREREEREEXEAEERERKERXKRKREXEXEXEERAEEXRRERELEEEXEEEECREX TR XE LR LT ERTE
C#¥¥* COMPUTE THERMAL COIiPONENT OF AIRY STRESS FUNCTION 2T
CEREELRRRRERRKRERL KL REELRREEREREERREEURRESRERBRRREEEE SRR KSR ARG EERRERRRERE X KR
20  IF (IHEAT .NE. 1) THEN
= ELSE
p DO 30 I=1,NMODEX

CI2XL2=I*1/XL2

DO 30 J=1,NMODEY
INTIJ(1,J)=P4X*CI2XL2+PAY*J*J/YL2

- 30 CONTINUE Y
« ¥ END IF
o RETURN

END *
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CEEREEREEREAERRRPEREELZRAERREEREERRKELEREEEREEXRUUBKERRKEEERERREEXRRRKRFERFREEE

CHE¥E YT L)
Chskk SIMLOAD KREK
Cheik RREE
CRERRELHERERAARRERERE RS EERRRRREREREERAALERRERRERRERRREEREEERRERRREEREXRRRREEE
C N -- NO. OF INTERVALS IN THE SPECTRUM

c N SHOULD BE AN INTEGER POWER OF TWO

C NPT  -- NO. OF POINTS FOR THE TIME SERIES

c NPT SHOULD BE INTEGER POWER OF TWO. NPTON

c ISEED -- RANDOM NUMBER SEED

C -

SUBROUTINE SIMLOAD(SPL)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON /XFER/ ISTEP,DSTEP,DT,Y(8192)

DIMENSION X(8192),8P(3500),W(3500),RAND(8192)

COMPLEX X,ZIMAG

LOGICAL INVERSE

DATA FMAX,INVERSE/500.,.TRUE./

DATA N,NPT /512, 4096/ :
ChkkkkknkkkkkikkkkikEkhkiRkerkikiikikkkknrkdkikkkikiiohkkkirkkrikkikkkikkkkkkkr
Ck*¥t INITIALIZE VARIABLES SREk
Cxkkkkfiikkkkkkkiokkrkkkkbihirkkkkkkkibrkrrkikkkkhbkkrkdkikkikkbkkirkrkkiekis

SPP=8.41%10%*%(-18.+SPL/10.)

PI . = 3.141592654
PI2 =PI * 2.0
NP1 =N+ 1

ZIMAG = CMPLX(0.0,1.0)

SPPW=SPP/P12

WU=FMAX*PI2

DW = WU / FLOAT(N)

DO 119 I=1,NP1

SP(I)=SPPW
W(I)=(I-1)*DW

119  CONTINUE

AREA=SPP*FMAX

SQ2DW = DSQRT(2.0%DW)

TTOTAL=PI 2/DW

DT=TTOTAL/FLOAT (NPT}
Ckkkkkkdkkkkkikiokkiokkkdkkkikkki dkkbikkkkikkkkikkkikipkkkpkklkkikkikrkkkkkikrk
Ce*** SET X(1)=0. IN ORDER TO OBTAIN NEW MEAN ZERC TIME SERIES L2 2 2
Crkikkikkkkkkkikikiopkp kR gk ikkior koo koo ok ok kiiok ik kb kR kdkok kb dkokk Kk bk k

X(1) = CMPLX(0.0,0.0)

DO 50 I = N+1,NPT

X(I) = CMPL.(0.0,0.0)
50 COKTINUE
Ceakskskdok ko koo ok dokolok st akotok ok ol sk ok ok akob ks ok skl ko ks ok R ok ok ok ok ok sk kol kol Kok ok ok
Cxx*x GENERATE RANDOM PHASE ANGLES UNIFORMLY DISTRIBUED BETWEEN ¥¥E%
(223 2 ZERO AND 2.%PI L2 2 2
(ot 3222233 2 2332233232323 3833233232332 323 3333333223333 332222322333+ 23 33T E

ISEED=12357

DO 51 I=1,N

51  RAN™(I)=RAN(ISEED)
DO 60 1=2,N+1
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PHI = RAND(I-1) * PI2
Pl = SQ2D¥ * DSQRT(SP(I))
X(I) = P1 * CDEXP{-ZIMAG*PHI)
60 CONTINUE
CRRERERBELERRERRRERRKE LR R SRR RRVERKEELER LR ERRRRERREEKEEEREREERRRE TRk ERk k%
C#%x* PERFORM FORWARD TRANSFORM Xk%
CRERRRREREREXRRREREERRK BRI R ERRRRKEREREF RGN RRR R iRk R gk kR Rk Rk kE
CALL FFT (X,NPT,1)
CRERRERERRRRXRREEXEERREREKRERERLREEREREREREREETREREREERZ KEEREERRERREERE LR K ¥
Cxkx%k  GET HEAL PART k¥
CREEREERRREKEREREKEERREREKERERREEEERELRERERERBRREEERREE AR ERERRRR Rk KRRk Rk Rk kK%
DO 70 1I=1,NPT
Y(I) = REAL(X(X))
70 CONTINUE
RETURN
END




CERRRAEEEERAREERXEREEESEL LR RERESLRREEREXRREEEEERAEEBERESEXERRERXEXEREREERR Y XK

Chkkx RN
Chexx FIJd FTE 3
Ckx%% ‘ £3 1Y

CHREEREEEERREEREBERERBEBLR AL EEEEXEEEREXE AR XL KL RBEERAXRKEEREEREERERAKERE XKL EREXK
FUNCTION FI1J(1G,IH)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /COM2/ XYL,I,J,K,L
COMMON /PROPS/ A11,A12,A22,A66,H,T1,T2,T3
IPK=1+4K
IMK=I-K
JPL=J+L
JML=J-L
=K*¥IH
LG=L¥1a
FIJ=2.*KH*LG* (BETA (IPK,IG)+BETA(IMK,1G))*(BETA(JPL,IH)+
1 BETA(JML,IH) )~ (KH*%2+LG**2) % (GAMMA(IPK,IG)~
2  GAMMA(IMK,IG))*(GAMMA(JPL,IH)~GAMMA(JML,IH))
DENOM=A22%1G*%4+(A66+2. ¥A12 ) ¥XYL##2% ( IH¥1 G ) *¥*2
1 +A115XYLS % 4R He*4
FIJ=FI1J/(H*DENOM}
RETURN
END
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CRRABEREERFXBEXEXKXRREXRERERRRERERRRAEREEEALLEEREREKELEEREEERERRETREER LR FUARTRES

Chirkx xRk
Chkkk FIJBAR shE%
Canx Ere

CRAXTRABERKLEXRFXEEERERERERERL XERKBRELEREEERERRREERERRRKREREREREREXLRERERREREER
FUNCTION FIJBAR(IG,IH)
IMPLICIT RFAL*8 (A-H,0-2)
COMMON /COM2/ XYL,I,J,K,L
COMMON /PROPS/ Al11,A12,A22,A66,H,T1,T2,T3
IF (1G .EQ. IH .AND. IG .EQ. O) THEN
F1JBAR=0.0
ELSE
IPK=14K
IMK=I-K
JPL=J+L
JML=J~-L
KH=K*{H
LG=L%IG
FIJBAR=2, ¥KH*LG¥(BETA(IPK,I1G)+BETA(IMK,IG))*(BETA(JPL,IH)+

1 BETA({JIML,IH))-(KH**2+LG**2 )% (GAMMA(IPK,IG)-

2 GAMMA (IMK,IG) )*(GAMMA(JPL, IH)~GAMMA (JML,IH))
DENOM=A22*%IG¥%4+(A66+2.¥A12 ) ¥XYL#%2% (IH*¥IG)**24+A1 1 ¥XYL¥*4* T H¥*4
FIJBAR=FIJBAR/ (H*DENOM)

END IF :
RETURN
END
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CHRREXXBEARKASREEKEE R AR EREERFEARERRE R IR AR R AR KRR ERREEXRE AL R RBREEEZEEREBREB R AR

Chea% wREx
Crexx BETA T
Crexx Rk

CEERREXERLXEFLERRRAEXNEALLESEEEREREEREEEEXERRREERK KRR EEREBR R EER XK ERREREREK
FUNCTION BETA(IP,IQ)
IMPLICIT REAL*8 (A-H,0-Z)
IF (IP .EQ. IQ .AND., IP .NE. O) THEN

BETA = 1.0 _
BETA = -1.0

ELSE
BETA = 0.0

END iF

RETURN

END
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CREXEEERLFERERRKXEARERERKRRERXER KL RERELERREEREREREELERRREXEXRERKEERERRRERRKRE

CHxk¥ T LT
CkEx% GAMMA ¥R
CEEks T LT

CEEEERERREXRERRERXUXXEXFERUEEREEEEERERREBERXEXEREEERRLERERRERERERXELEXRR XK R KK LK
FUNCTION GAMMA(IP,IQ)
IMPLICIT REAL*8 (A-#,0-Z)
IF (IP*%2+1Q#%*2 .EQ. 0) THEN

GAMMA = 2.0

ELSE IF (IABS(IP) .EQ. IABS{1Q) .AND. IP .NE. O) THEN
GAMMA = 1.0 :

ELSE
GAMMA = 0.0

END IF

RETURN

END
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CEERERBERRRXEEREERERXEREEEELERKRERBEEREAERKERERRERERRERREEEREERERREZRRRXRREREAE

Chixs Bk
Caex% DIFFEQ RkE%
CHei 1T

CERRERERREELEREREERRERXEREEEERXTXEEREREREERRRREEREEEEEREERKA KRR RRFRRR R R RERK XK

SUBROUTINE DIFFEQ

IMPLICIT REAL*8 (A-H,0-2)

COMMON /RNG/ N,X,Z,ZPRINE,HH,JR,JMAX,MR,XOUT, IFREQ,

1 Xxi,x2,x3,v1,Y2,Y3,T0L

COMMON /XFER/ ISTEP,DSTEP,DT,RKLOAD(8192)

DIMENSION Z(18),ZPRIME(18),Y1(18),Y2(18),Y3(18)

DIMENSION Q1J(3,3),wW1J2(3,%),00(3,3),ZNT1J(3,3),

1 VIJMN(3,3,3,3) . "iJKLMNRS(9,9,9,9)

COM40ON /COMi/ QIJ, WIj2, <

COMMON /CUM3/ NMODEX,NNMODEY,NMODEXY,NDIMX,NDIMY,NDIMXY,ILIN

COMMON /COM4/ VIJMN, ZIJKLMNES

COMMON /COMS/ IHEAT, ZINTIJ

DATA ICNT/0/
CERRERLRRERRRXEEEEREEEEREREREBRRUBRERERBERRRELERERERXERKREEEEREERRERRRERLRERAR
Ckxs2 INTERPOLATE TO DETERMINE LOAD TERM k%
CEREREEERSERXEEBREBAERERRRERERERERBREEAREREER LR BEREERRBRRKRRRERR KRR Rk Rk kR Xk

NEQ=N

IF(ICNT.GT.0)GO TO 2

ICNT=1

IPLUS=1

=0.0

PRP=0.0

T1=0.0

T0=-DT

SLOPE=0.0

PR=0.0
2 iF(X.GT.T1) GO TO 1
IF(X.LT.TO) GO TO 2
PR=PRN+(X-T0 ) *2LOPE
GO TO 20
IPLUS=-1
ICNT=ICNT+IPLUS
ERM=RLOAD ( ICNT-1)
PRP=RLOAD(ICNT)
SLOPE= ( PRP-PRM) /DT
TO=TO+DT*IPLUS
T1=T1+DT*IPLUS
IPLUS=1
GO TO 2
20 CONTINUE
CEEXEEREERUBELERLERLEERLEEREEBUREXRERERERERERRRERERREREERBRREREREEERRR KL KL R R %
Cxxx% SPECIFY DIFFERENTIAL EQUATIONS £z 313
ot 2223233333333 3 421332132822t 3 2333332 i23d3333332 332333332223 233 32

DO 5 K=1,NMODEXY

ZPRIME(K)=Z (K+NMODEXY)

5 CONTINUE

DO 10 I=1,NMODEX

DO 10 J=1,NMODEY

—
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K=(I-1)%NMODEY+J
KK=NMODEXY+K
CALL V21J(V1J,21J,2,NEQ,I,J)
ZPRIME(KK) = PR*QIJ(I,J)-CO(I,J)*Z(KK)-W1J2(1,J)*%(K)
1 -VIJ*Z(K)-2IJ+INTIJ(1,J)*Z(K)
10 CONTINUE
RETURN
END
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CEEREXEEEERALERREXEEREELE LR XX B X KK EREB KRS AR ERERKERA LR R KR LR XL LR XU S RRAKKERE

CHxx%
CHEx%
CH%%

L2 2 1

viiy X% |
%KX |

CERERERRERKAREEEREEREERBUARRERELERE LR EEERERRKENEERRREERRERERREEXEERRERRR XK EERXLE

C#x

Cx¥

30
20
10

SUBROUTINE VZ1J(V1J,21J,Z,NEQ,I1,J) |
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Z(NEQ), VIJMN(3,3,3,3),
Z1JKLMNRS(9,9,9,9)
COMMON /COM3/ NMODEX,NMODEY ,NMODEXY , NDIMX,NDIMY,NDIMXY,ILIN
COMMON /COM4/ VIJMN,ZIJKLMNRS

¥1J=0.0
21J=0.0
I1J=(1-1)%NMODEY+J

DO 10 M=1,NMODEX
DO 10 N=1,NMODEY
MN=(N-1)*NMODEY+N
IF(ILIN .EQ. 0) GO TO 10
VIJ=VIJ+Z (MN)*Z (MN)*VIJMN(I,J,M,N)
ZKLRS=0.0
DO 20 K=1,NMODEX
DO 20 L=1,NMODEY
KL=(K~1)*NMODEY+L
ZRS=0.0
DO 30 IR=1,NMODEX
DO 30 IS=1,NMODEY
IRS=(IR-1)*NMODEY+IS
ZRS=ZRS+Z(IRS)*ZIJKLMNRS(IJ,KL,MN, IRS)
CONTINUE
ZKLRS=ZKLRS+Z (KL )*ZRS
CONTINUE
Z1J=21J+Z (MN)*ZKLRS
CONTINUE
RETURN
END
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CEEXEREREEXRABERXEKARBREREEEEREREREXESERRRRKERERERAKELEEREXAESERALEEEEELERLERXE

CH¥kx YT T
CExex RESPON FT T
CH¥xx TT T

CEERRXXERAEXAXEELR KRR RRRXARKKLERELEERERREREREEXKAF TRREERRRRXKEERXEREREEE KKK LK

SUBROUTINE RESPON(A,XL,YL,I1STEP,DT,C1,C2,C3,C4,PX,PY,XYL, IHEAT,

1 STHERX , STHERY , SUMD, SUMD2 , SUMX , SUMX2, SUMY , SUMY2,

2 SUMXY, SUMXY2)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION A(NDIMX,NDIMY)

COMMON /COM3/ NMODEX,NMODEY ,NMODEXY ,NDIMX,NDIMY,NDIMXY,ILIN

COMMON /PROPS/ Al1,A12,A22,A66,H,T1,T2,T3
Chkkkkkpkikkkbikkekibkiihrrprkibkiikkkikkiiiirkikikiikrikkikkkkikkkkkkirs

Cx¥¥x INITIALIZE *kk¥
Crkkkkkkrrkkkkkkkikkikkkrrrikkhhkkhikkhbkkkkhkrkkkdkkkirbrhkhrbkritrkrkrd

DISPL=0.0

SIGMAX=0.0

SIGMAY=0.0

TAUXY=0.0
CHRERRRRERERRRERERLERRRERERERRRRRRRRRRRR kR R RR kR Rk k Rk khkkkkbokkkkxkkkokkk ki
C¥¥*% COMPUTE STRESSES BY SUMMING LINEAR AND NONLINEAR TERMS k%

C*************#**************#*********#***********##****#*t*****************
DO 10 M=1,NMODEX '

SINMX=DSIN (M*PX)

COSMX=DCOS (M*PX)

XLM=M/XL

DO 10 N=1,NMODEY

YLN=N/YL

SINNY=DSIN (N¥PY)

COSNY=DCOS ( N*PY)

DISPL=DISPL+A(M, N)*SINMX*SINNY
Chkkkkikkkkkkikkkkkikkkkikkikkikkkikktkkkirkkkiiiokkiokkkkkhkikikkkokiimrkkkkiiort el
C¥%%% CALCULATE STRESSES FROM NONLINEAR PART OF AIRY STRESS FUNCTION  %&¥¥
ChERkkkkriks ki ikiokkkkdokkikkkkikxkiiikkkkikikkkkkiiihll kRirRrRpkkErikkskkkkk

CALL SUMRS(RSX1,RSX2,RSY1,RSYZ,RSXY1,RSXY2,M,N,

1 A,PX,PY,XL,YL,XYL)

CC1=C2%A(M,N)

IF(ILIN .EQ. 0) CCl1=0.
Chikkkkkkkkikkiorkkdkkikkkkkrk ik kkkedkkkikokk kit kkkkkkiokkikrkrkkopkiikkRkkkikkk
Ck*%% ADD LINEAR AND NONLINEAR CONTRIBUTIONS *hEX
CRxkbkkpkbkkkirrkkkrkkikkkikkkkiiRkikkkkkikrkkbkbkikkexirkikkkkrirkrkkkrtkkks

CCO=A(M, N)*(C1*¥SINMX*SINN. +CC1)

SIGMAX=SIGMAX+CCO¥ (T1%*YLM¥*24+T2*YLN*+2)-C3%A(M,N)*(RSX1+RSX2)

SIGMAY=SIGMAY+CCO* (T2¥XLM**2+T3+YLN**2)-C3#A (M, N) *(RSY1+RSY2)

TAUXY=TAUXY+(C4/A66 ) %A (M, N) $COSMX*COSNY-C3%A (M, N) * (RSXY1+RSXY2)

10  CONTINUE
Gk sk o ak o e o ook o 3k s e e o o o e e o o she sk ol o ok e ke o ol o sl ol o ok ks o e o o o ool ok o o ok o o o o ook o ke sk o o o ke sk o e ok e o
C¥+¥% ADD IN THERMAL COMPONENT *hek
Chkkkkkkkkkikkkkdoriokikikkikikkkikorikikikkikkkirikkkk ik RkrkkkiokRkkkkrionkkrkkkkikdy
IF (IHEAT .NE. 1) THEN
ELSE
SIGMAX=SIGMAX-STHERX
SIGMAY=S1GMAY-STHERY
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END IF
2222022222222 24223223323 33332222234 2233372 2222228122232 233 2332332922214

C*3%% PRINT OUT TIME DOMAIN RESPONSE REEE
CEEEERERRAXAAXEREREEEXERXUEEREREEERELEBERERREEERELRREREREREKRBREEER TR RBRRERE
T=DT*ISTEP

WBITE(6,100) T, DISPL, SIGMAX, SIGMAY
100  FORMAT(2X,F8.6,3(2X,E14.6))

WRITE(1,1000) T,DISPL,SIGMAX,SIGHAY,TAUXY
1000 FORMAT(5E10.3)
CREERXRREBREBERRDERRREEBRCELERREERBBRRBEEEELERUEEERRRET AR ERRRE KR REEELR A TR REE
Cs*%%x SUM DISPLACEMENT/STRESSES AND SQUARES i
CRERREXREBERBXERREREELEBRERAR]  LREELERREERRERERREBREXEEREERERERREERRRERERR R RN X

SUMD=SUMD+DISPL

SUMD2=8UMD2+DISPL*DISPL

SUMX=SUMX+SIGMAX

SUMX2=8SUMX2+SIGMAX*SIGMAX

SUMY=SUMY+SIGMAY

SUMY2=SUMY2+SIGMAY*SIGHAY

SUMXY=SUMXY+TAUXY

SUMXY2=SUMXY2+TAUXY*TAUXY

RETURN

END
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CRERERELARERRXEXRRRERRKERREERRREEFERRERFRXRRERUR KRR R ERARREEERRERERRRE XNk T 2L

Ch¥ex Kk
Crixx SUMRS k%
Chixx T

CEERER LR BT RERAEXRREXXZERERERBRFRERLEXARKERERKEREREREREERRERREREREETRER L EEK
SUBROUTINE SUMRS(RSX1,RSX2,RSY1,RSY2,RSXY1,RSXYZ,M;N,
1 A,PX,PY,XL,YL,XYL)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /COM3/ NMODEX,NMODEY ,NMODEXY,NDIMX,NDIMY,NDIMXY,ILIN
COMMON /PROPS/ Al1,A12,422,A66,H,T1,T2,T3
DIMENSION A(NDIMX,NDIMY)
CERRRRRERRREEREREXREXEAREKREXEXERBERRERERERRRERERERRRERRRRRERRERRREY RR¥ kKR k%
Ce¥xx INITIALIZE kxk%
Ckkkkkkkhkkirikkkkirkkrrpiribkirkideikkrrkbiikrrikkrrkkirikkkrkikr okkpriirs
S1=A22%H
82=(2.%A12+A66)*H
S3=A11%H
RSX1=0.0
RSX2=0.0
RSY1=0.0
RSY2=0.0
RSXY1=0.0
RSXY2=0.0
IF(ILIN .EQ. 0) RETURN
CREkEREEAARERREEKELEREKEKRRERKREKKRREBREEXEEEEELERXRRRKERREEREERRE SRR REERERARELKE
Ckxk¥ COMPUTE NONLINEAR STRESSES (FROM PARTICULAR SOLUTION) *kk%
Clkkkkk kR R ER R RRREEERRBRRKERERLERERRRERRRRREERREEBEFABBEERBRREERB LR R KRR KR K
DO 10 IR=1,NMODEX
MPR=M+IR
MMR=M-IR
MPR2=MPR*MPR
MMR2=MMR*MMR
XLMPR=MPR/XL
XLMMR=MMR/XL
XLMPR2=XLMPR**2
XLMMR2=XLMMR#**2
CMPRX=DCOS (MFR*PX)
CMMRX=DCOS (MMR*PX )
SMPRX=DSIN(MPR*PX)
SMMRX=DSIN(MMR*PX)
DO 10 I8=1,NMODEY
NPS=N+IS
NMS=N-IS
NPS2=NPS*NPS
NMSZ2=NMS*NMS
YLNPS=NPS/YL
YLNMS=NMS/YL
YLNPS2:=YLNPS*#*2
YLNMS2=YLNUS*%2
CNPSY=DCOS { NPS*PY)
CNMSY=DCOS ( NMS*PY )
SNPSY=DSIN(NPS*PY)
SNMSY=DSIN(NMS*PY)
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SomETAe Y

XYNPS=XYLANPS
XYNMS=XYL#NKS
XYNPS2zXYNPS$#2
XYNM32=XYNMS %2 \
CRERBERXEXREEEGRKREEEARREERRERE ST RRASRERRBEKRELERRRREEREERERRREERREREREERRR%K
Cs**% TERMS FOR WHICH "KR .NE. ML" *EEE
CEE3NARRREVEEERERKERESLEVUELEERERREEERRERERREERERRERXREEEREREERRERET KRR KRR LXK
IF (N*IR .EQ. M*IS) THEN
ELSE
PP1=CMPRX*CNPEL/ (S1¥MPR2%%$2+S2Z*MPR2*XYNPS2+S3*¥ XYNPS2¥%2 )
PP.'=CNKRX*CNM{Y/ (S1#MMR2# %2 +S 24 MMR 2% X YNMS2 +S3#XYNNS 2442 )
PP5=SMPRX#SNPSY/ (S1¥MPR2O¥%2+S2%MPR2#YYNPS2 +S3# XYNPS2¥%2 )
PP6=SMMRX¥SNMSY/ (S1¥MNR2*%2+824MMR2%XYNMS 2+ 33 XYNMS2%+2 )
Ql=A(IR,IS)*NSIS#(NSIR-M¥IS)
RSX1=R8X1+Q1#%(YLNPS2%PP1+YLNNS24PP2)
ROY1=88Y14+Q1* ( XLNPR2#PP1+XLNNR2*PP2 )
REXY1=R3XY14Q1%( XLEPR¥YLNPS*PP5+ XLMMR*YLNMS#PP6 )

ERD I¥
CRRRRRRRRIREAEERERREERRRREBURRALEEBLERRRCERRRRREXRREBELLERRTEREEERRRRR S RRRRE®
Cs¥x& TERMS FOR WHICH "KR .2Q. ML" Bk

CHRERRERERLRRRARERT BIRRRRKLAKELERLLAERBAREEEEERREERERBLEGERBRLCRETRERE TR SRS ERY

PP3=CMPRX¥CNMSY/ (S 1¥NPR2**2+ 5251 PR2*XYNMS 2+ 3% XYNHS 2% % })
PP4=CMMBX*CNPSY/(S1¥MMR2*¥24 52 MMR2*XYNPS2+33%XYNPSL#% )
PPT=SHPRX*3YMb Y/ (S 14MPR2*¥ 24024 MPRIFXYNHS 2483 XYNMS 2442 )
PP8=SMMEX#SNPSY/ (S1¥MMR2% 42+ 32 MMR2*XYNPS2+8 3% XYNPS2#%2 )
Q2=A(IR,IS)#N¥IS%(NXIR+H*1S)
RSX2=RSX2+Q2% (YLNMSZ*PPI+YLNPS2%PP4 )
RSY2=RSY2+Q2#¥ (XLMPR2%PP3+XLMMR2*PP4 )
RSXY2=RSXY2+Q2* (XLMPR*YLNMS*PP7+XLMMR*YLNPS+PF8 )

10  CONTINUE

RETURN
END
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CREREREREREERPRREF AR L KRR RERERERRREREERRXRFRERREERERRRRERKREER LR REREE SRR TR K EE

CHEx¥ *¥k%
CrEx% RUNGE *hkK
CH¥xsk AR

12222222222 22222 R o222l 2t Do i e e iR st 22t SR P T2 iR L
SUBROUTINE RUNGE
IMPLICIT REAL*8 (A-H,0-2)
COMMON /RNG/N,X,Y,DY,HH,J,JMAX,M, XOUT,IFREQ,X1,X2,X3,Y1,Y2,Y3,TOL
DIMENSION Y(18),DY(18),Y1(18),Y2(18),Y3(18)
J=1
JMAX=1
IFREQ=3
M=1
CALL EUNRUT
RETURN
END
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CHREEXRERLERREBERELRABLEERERLE R AEERRA VLS RS RABREREEEERERRKEEERXASERERE XX REERREE

Chiss ' Fkky
ChEx% RUNKUT k%%
ChERk ' Rk

CERREREEBEEARRREBEEREAEILLEBE L RLERLREXBERREREBRBE RS LEXER LSRR BEE RS E R R KRR X%

SUBROUTINE RUNKUY
IMPLICIT REAL¥8 (A-H,0-Z)
COMMON/RNG/N, X,Y,DY,HH,J,JMAX,M, XOUT,IFREQ,X1,X2,X3,Y1,Y2,Y3,TOL
‘ DIMENSION Y{18),DY(18),Y1(18),Y2{(18),Y3(18)
INDE9Y =0
CALL ADJSTP
1 : IF(J-JMAX} 10,18,50
| 10 INDES = INDE9 + 1
CALL INTPOL
IF(J-JMAX) 20,20,50
20 CALL STEP |
X1 = X2 |
X2 = X3 g
X3 = X |
DO 30 I =1, R -
Yi(1) = Y2{I)
Y2(1) = Y3(I)
30 Y3(I1) = Y(I)
IF (INDES - IFREQ) 10,40,40
40 INDE9 =0
. CALL ADJSTP
® IF(J"JMAX) 10.10’50
e 50 RETURN
END
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ChREk eI
CREEk ADJSTEP SRRk
CxxkE ¥E%

Mt S iihnistdadetiihdttoitiideciisdaiidisiddiiiddi ittt dd it i d ittt
SUBROUTINE ADJSTP
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/RNG/N, X,Y,DY,HH,J, JMAX,M, XOUT, I FREQ, X1,X2,X3,Y1,Y2,Y3,TOL
DIMENSION Y(18),DY(18),Y1(18),Y2(18),Y3(18)

KSL=0
HFACT = 1.0 D+31
HFACT1 = 1.0D+30
Go TO (30,10), M

10 H1 = HH
HH = 2.0 ¥ HH
X = X1
D020I =1, N

20 Y(I) = YI{I)
GO TO 100

30 KSL=1

40 Hi = HH
XXX = X
DO S0 I =1, N

50 Yi{I) = Y(I)
X1 = X
"CALL INTPOL

IF{(J-JMAX) 60,60,250
60 CALL STEP
DO 70 I =.1, N

70 Y2(I) = Y(I)
X2 =X
CALL INTPOL

IF(J-JMAX) 80,80,250
80 CALL STEP
DOSOI=1, N .

Y3(1) = Y(I)
80 Y(1) = YI(I)
X3 = X
X = XXX
HH = 2.0 * HH

100 CAL. STEP
DO 150 I =1, N
DELY = DABS ( Y(I)-Y3(I))/30.0
IF(DELY -DABS (Y2(I))*TOL )120,110,110
110 IF( DABS (Y2(I))-TOL) 120,130,130
120 HFIRST = 1.0D+30
GO TO 140
130 HFIRST= (DABS (Y2(I))* TOL/DELY ) #%%0.2
140 CONTINUE
150 HFACT=DMIN1 (HFACT, HFIRST )
IF (HFACT1 - HFACT) 160,160,170
160 HH = 2.0 * Hl
GO TO (40,230), M
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170 HH = H1 * HPACT
GO TO (180,230), M
180 IF(KSL) 220,220,190
190 KSL=0
S IF(DABS (HH)-DABS (H1)) 200,220,220
- 20000 210 I =1, N
St 210 Y{I) = Y1(I)
p X = XXX
S ¢ . GO TO 40
g ~ 220 KSL=0
M =2
SR B 230 DO 240 I = 1, W
b 240 Y(I1) = Y3(I)
-y 250 RETURN

END




Lo T T 1L Tttt E o —

Chkkx *kkk
Crxkk STEP pEx
Crik Rkkk

CHRERBREEXRERRRERUAERRRERLLAEREERREREEERERRERERERRRLEEERERRLERRRRLEEAELEERRE KR

SUBROUTINE STEP
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /RNG/N,X,Y,DY,HH,J,JMAX,M, XOUT, IFREQ, X1,X2,X3,Y2,Y2,Y3,TOL
DIMENSION Y(18),DY(18),Y1(18),Y2(18),Y3(18)
DIMENSION Y0(18),P1(18)
DO10I =1, N

10 YO(I) = Y(I)
X0 =X
CALL DIFFEQ
DO20I =1, N

P1(I) = DY(I) * HH
20 Y(I) = YO(1I) + P1(I)*0.5
X = X0 + HH%0.5

CALL DIFFEQ
DO 30 I =1, N
P1(I)= P1(I)+2,0%HH*DY(I)
30 Y(1) = YO(I) + 0.5%HH*DY(I)
CALL DIFFEQ
D040 I =1, N
P1(I)= P1(I)+2.0%HH*DY(I)
40 Y(I) = YO{l) + HH*DY(I)
X = X0 + HH
CALL DIFFEQ
DO S0 I=1, N
50 Y(I)=YO(I) + (P1(I)+HH*DY(I))*0.1666667
RETURN
END
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CERREERRKERAEFAERERREREXRREBRREEIEREERREREEKERRREERAREAR RS EXEREXERBRR LRk RRRE

Cre%k £XE%
CH¥x% INTPOL *Ekk
CHExx : KRKK

of 2232323233332 23333323 333233 3 33223232031 22 T AN S 223 32 222 $ A ST AT E 2T

SUBROUTINE INTPOL
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /RNG/N,X,Y,DY,HH,J,JMAX,M,X0UT,IFREQ,X1,X2,X3,Y1,Y2,Y3,TOL
DIMENSION Y(la),DY(IB),YI(IB),Y2(18).Y3(18)
IF(DABS (XOUT - X)-DABS (HH)) 10,10,20

10 HH=XOUT-X
CALL STEP
J=J+1

20 RETURN
END
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CRERERELEREEERERRRREREEEKERREERLEREARABRAELLERRRRLREEELRRRERERERRREREXERKIFER K%

& CH¥s% *E%X
- Chaxk FFT XX
. s CHikk Rokkk
i ol T T T R T2 2 T 2 e T T R Y T

SUBROUTINE FFT(X,N,K)
IMPLICIT INTEGER (A-Z)
REAL*4 GAIN,PI2,ANG,RE,IM
COMPLEX X(N),XTEMP,T,U(16),V,W
LOGICAL NEW ‘)
DATA PI2,GAIN,NO,K0/6.2831856307,1.0,0,0/
NEW=NO.NE.N
1F(.NOT.NEW)GO TO 2 :
L2N=0
NO=1
1 L2N=L2N+1
NO=NO+NO
IF(NO.LT.N) GO TO 1
GAIN=1.0/N
ANG=PI2%GAIN
RE=COS(ANG)
IM=SIN(ANG)
2 IF(.NOT.NEW.AND.K*¥K0.GE.1) GO TO 4
U(1)=CMPLX(RE,-SIGN(IM,FLOAT(K)))
DO 3 1=2,L2N
v 3 U(1)=U(i-1)*U(1-1)
s KQ:K
4 SBY2=N
. DO 7 STAGE=1,L2N
N7 =U(STAGE)
e w=(1.0,0.0)
S=SBY2
SBY2=S/2
,E DO 6 L=1,SBY2
4 Do 5 1=1,N,S
: - P=I +L"'1
- Q=P+SBY2
-, T=X(P)+X(Q)
o X(Q)=(X(P)-X(Q) ) *W
e X(P)=T
W=WkV
CONTINUE
. DO 9 I=1,N
o INDEX=1-1 *
JNDEX=0
Do 8 J=1,L2N
JNDEX=JNDEX+JNDEX
ITEMP=INDEX/2
1F(ITEMP+ITEMP.NE. INDEX ) INDEX=JNDEX+1
INDEX=1TEMP
8 CONTINUE
J=JNDEX+1
IF(J.LT.I1)GO TO 9

13
b -2 4

L

DO
; " e e -
.-J‘L - &
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XTEMP=X(J)
X(J)=X(1)
X(I)=XTENP

9 CONTINUE
IF{K.GT.O)RETURN
DO 10 I=1,N

10 X(I)=X(I)*GAIN
RETURN
END

125




PROGRAM PDF
CEERTEEXBXRLAREEREXLEXERKLEB LR BXERR KRB RRERBRRX KR EEBEAXBRS KR RS RXB RS EERAKE K

Chaxs SREX
C*%%% THIS PROGRAM IS USED TO CALCULATS THE PROBABILITY DENSITY P2t
CH¥sx FUNCTION, PEAK DISTRIBUTION, AND UP-CROSSING RATE OF A RANDOKN L2223
Cs%%x  PROCESS. YT
Chixx ERR%

C#sx% THE CALCULATION IS DONE FROM ~4#%SD TO 4%SD WITH NDIV INTERVALS  #%&x
C*x%x  IN EACH STANDARD DEVIATION (SD). THE TOTAL NUMBER OF INTERVALS #*%%%

Cx%x% IS 8%NDIV WITH THE FIRST INTERVAL BEING -INFINITY TO RAEA
Ckssx  -(4,-(4-1/NDIV)SD) AND THE LAST INTERVAL BEING (4-1/NDIV)SD) TO #&x*
Cssxx  INFINITY. ra%%
Cka% Ekx%k
Ck#k* THE INPUT DATA FILE IS FOR0O1.DAT WHICH CONTAINS THE RESPONSE kkE
C#s*x TIME HISTCRY PRODUCED BY PROGRAM TDR. *ke%
Creex ¥kk%

CHEXRAELELRARREREBURLEEREARREREERXEERREREERRLREEERRRXKERLXEEEEREXELRXRA RS RRA SR
COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(13000), XDENS(200), XNPK(200), XCROSS(200)
CALL READDATA(F,NPT,SD,DSD,NHALF,NHALF1,

1 NDIV,NDIVT,DX,TTOTAL,SHIFT)
CALL DENSITY(F,XDENS,NPT,SD,DSD,NHALF,NHALF1,
1 NDIVT,DX,SHIFT)

CALL PEAKDIS(F,XNPK,NPT,SD,DSD,NHALF,NHALF1,

1 NDIVT,DX,TTOTAL,SHIFT)

CALL UPCROSSR(F,XCROSS,NPT,SD,DSD,NHALF,NHALF1,

1 NDIVT,DX,TTOTAL,SHIFT)
CARRFERKEBEERRERERRERLEERREEREREERERERREXERREREEEXREELRERSERXERERKRRRARX SRR KKK
CEExk YT 1
C#*%%  INFORM USER OF OUTPUT FILES AND CONTENTS SakE
CEE%x% T
CRERERBRRRRERLRRRRERERERESRREXERRXERTRERRRREREERELEREEEERREERRRKBRRRARBRRXLR

TYPE ¥,' °
TYPE *,' Qutput files: FOR0CQ7 -- Probability density and’

TYPE *,’ theoretical Gaussian’
TYPE *,’ Output files: FOROO8 Peak distribution’
TYPE #,' Output files: FORQ09 Upcrossing rate’
TYPE *,’ Output files: FOR010 Theoretical Gaussian’
TYPE *,’ Output files: FORO11 Theoretical Rayleigh’

STOP

END
CRARERRLAREAREXXEEXERBEBXERREXEERERAEEXREREESEEREBXRUAEXEEREEXRERERXREERELRAE
Chikx ¥k
C*x*xx SUBROUTINE READDATA ke
Chkk rREX
Ck**% READS DATA, COMPUTES THE MEAN, RMS, STANDARD DEVIATION, b
C**%% COEFFICIENTS OF SKEWNESS, KURTUSIS OF THE PROCESS k%
Chkks kK

CRRRRRERREREREAAEERERRERRRRRRRERERKEREEERRRRRXELELEREBREEE XKL RBRREXRKAKERRREY
SUBROUTINE READDATA(F,NPT,SD,DSD, NHALF,NHALF1,NDIV,NDIVT,DX,
1 TTOTAL, SHIFT)
DIMENSION F(1)
COMMON/TITLES/ TXTLE(20),SUBTIT(20)

126




a

R CHARACTER*8C DUMP

iaﬁ CHELREREPLRERERRBAAERREEKURRRERRRBEEKERRRRRRERENRXBEKEREREERRRER LR ERERREERKRE

e C#k¥% READ IN DATA FROM TDR (FOROO1.DAT) AND SCREEN (UNIT 5) k%% i
1£A CREXRZRERREERARXRELERLERRERBERRLLRKRAXSLRBERKEERETEEREERKER R KR EEREERERERREE X%

READ(1,10000) TITLE |
10000 FORMAT(X,20A4)
READ(1,10000) SUBTIT
READ(1,10001) NPT,DT
¢ 10001 FORMAT(15,E10.3)
‘READ (5,111) ICOL,NDIV,IMEAN
111  FORMAT(3I15)

‘ TTOTAL=DT*(NPT-1)
DX=1./NDIV ! DX = nondimensional increment.
NDIVT=NDIV%8 ! Total # of divisions from -48SD to +4SD

NHALF=4%NDIV
NHALF1=NHALF+1
v T DO 81 I=1,NPT
, 81 READ (1,99) ZJUNK, F(I)
99 FORMAT(5E10.3)
ELSE IF (ICOL .EQ. 3) THEN
DO 82 I=1,NPT
82 READ (1,99) ZJUNK, ZJUNK, F(I)
ELSE IF (ICOL .EQ. 4) THEN
DO 83 I=1,NPT _
83 READ (1,99) ZJUNK, ZJUNK, ZJUNK, F(I)
ELSE
DO 84 I=1,NPT
84 READ (1,99) ZJUNK, ZJUNK, ZJUNK, ZJUNK, F(I)
END IF
ChREERRARRELRER S REEXERERRERREKEREERERERE LR LR RERUERERRRRR KRR ER R kR KRRk kKKK RRK
Ckixkx FIND MEAN AND RMS FOR PROCESS *kik
Caakkkkkykkkkkkk sk kixkkikpkkekkkkiRikrskbkkkkkkrpipkkkikikikibrikikkrkidk
SUM=0.0
SUM2=0.0
DC 10 I=1,NPT '
SUM=SUM+F(I)
SUM2=SUM2+F (I )*%*2
10 CONTINDE
XMEAR=SUM/NPT
SUNZ=SUM2/NPT
RMS=SQRT(SUM2)
CHERERRFXRREERRRKRERREREERRKERERREREKKRERRRRRRRKEEEEERRRRRRRKERRRERER AR AR KR KR
C*k¥¥x FIND STANDARD DEVIATION (SD), COEFFICIENTS OF SKEWNESS, KURTOSIS #**x%
Chkkkkkkkkpkkkkkkkpkkkikkkribikkrirkikikkkekiirrrkikikkkikrkesiirikkikkkikirs
SUMV=0.0
: SUMS=0.0
S b SUMK=0.0
e DO 20 I=1,NPT
DIFF=F(I)-XMEAN
f o DIFF2=DIFF*DIFF
Y SUMV=SUMV+DIFF2
> : SUMS=SUMS+DIFF*DIFF2
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SUMK=SUMK+DIFF2*DIFF2
20 CONTINUE

SD=SQRT (SUMV/NPT)

COSKEW=SUMS/SD*#*3/NFT

COKURT=SUMK/SD**4/NPT-3.
CRERRRBRERRRARAEXXEEERALEREERREFEEREELRRREREEBRALAREEREESERERRERRAERREERRXERX

Ckx%¥* WRITE OUT CALCULATIONS Ll
CHRERRRERERREVERARERKEERREERRRRRRRERERERERRLRREERRERRRRRAEREEERRERRRERAR KRR R RS
WRITE(6,1111)
1111 FORMAT(1H1,//,10X,’ PDF "o/ »
1 10x,’ FOR AFSC/ASD/PMRNA "5/
2 10X,°’ WPAFB, OHIO Yo/
3 10X,’ BY ANAMET LABORATORIES, INC.',/,
4 10%,° HAYWARD, CALIFORNIA *s/s
5 10X, *CONTRACT NO. F33615-89-C-3210’,/)

WRITE(6,1234) (TITLE(KK),KK=1,20)
1234 FORMAT(/,X,20A4)
WRITE(6,1234) (SUBTIT(KK),KK=1,20)
WRITE (6,30) XMEAN, RMS, SD, COSKEW, COKURT

30 FORMAT (10X,’ MEAN = ',E13.5,/,

+ lox,, ’ RMS = ’,E1305,/9

+ 10X,’ STANDARD DEVIATION = ',E13.5,/,

+ 10X, 'COEFFICIENT OF SKEWNESS = ’,E13.5,/,

+ 10X, 'COEFFICIENT OF KURTOSIS = ’,E13.5,/)
CEREURERAFEERERERAREEKEERELREEKKERKRERREREREEEERELREEREEREERRREREEEEREERK KKK R K
C*x¥¥ DIAGNOSTIC MESSAGE *¥kk

CRERRERRRRKERRREXERELEERE LR ERRRIRRERERERERERREERRRR LA RESRFRREEERRRRRRESRK R KK
SHIFT=XMEAN/SD
IF (SHIFT .GT. 0.05) THEN
WRITE (6,100) XMEAN,SD,SHIFT

100  FORMAT (/,’ MEAN VALUE OF THE PROCESS IS NOT ZERO!!!! ’,/,

1 ' MEAN = °',E13.5,° SD = °,E13.5,' RATIO = *,F7.4,/)

ELSE

END IF
Chkrkkikkkkkkkkkkikitkkikkiokkkkkirrkkkikkkkkikkkediihkikpkkikdskgpkikipikis
Ck**x RECOMPUTE F(I) WHEK MEAN IS EXCLUDED REky
ot 2322333323323 3222223232233 33 23323333322 2222223223223 233233222

DO 98 I=1,NPT

F(1)=F(1)~XMEAN
98 CONTIMUE
IF (IMEAN .EQ. 1) THEN

SHIFT=0.0

ELSE

END IF

DSD=8SD/NDIV ! Increment in actual value
fofbt 322233 23+ 2 333223323323 2333322233323 3223332238237 2E 223322222 23233232 323344
Cxxx%x WRITE RESULTS ON OUTPUT FILES L2 2 2

CHEREERERELRRERERRLRRERRERRERARKREREEERKERERERAROREERRERKELEERRSEREARLIRRA RS
WRITE (7,310)
310 FORMAT(' PROBABILITY DENSITY’,/)
WRITE (7,313) XMEAN,SD,RMS;NPT,DT,NDIVT
WRITE (7,314) IMEAN
WRITE (8,311)
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311 FORMAT(® PEAK DISTRIBUTION’)

WRITE (8,313) XMEAN,SD,RMS,NPT,DT,NDIVT

WRITE (8,314) IMEAN

WEITE (9,312)
312 FORMAT(’ UP-CROSSING RATE’,/)

WRITE (9,313) XMEAN,SD,RMS,NPT,DT,NDIVT

WRITE (9,314) IMEAN

WRITE (10,315) SD

WRITE (11,316) SD
313 FORMAT (® NEAN = ',E13.5,’ Sp = *,E13.5," RMS = ’,E13.5,/,

1 ' NO. OF PIS =’,15,' DT = ',E13.5," TOTAL DIV. = ?*,I3)
314 FORMAT(/,2X,’ IMEAN = °,I2,’ NOTE: IF IMEAN=1 THEN MEAN EXCLUDED’)
315 FORMAT(' THEORETICAL GAUSSIAN WITH MEAN = 0. AND ’,

1 ’ 8D = ',E13.5,/////)
316 FORMAT(' THEORETICAL RAYLEIGH WITH °’,

1 ' 8D = ’,E13.5,/////)

RETURN

END
Ty S T e TR R T T R T S R T R T B T R R T R T R T AT 2
Cs%*%  SUBROUTINE DENSITY Ll

CHexxk THIS SUBROUTINE CALCULATES THE PROBABILITY DENSITY, THEORETICAL *%%*
Css%%x  GAUSSIAN DESNTIY WITH ZERO MEAN AND STANDARD DEVIATION OF THE L2 2 1
Cx%%¥* RANDOM PROCESS *kkk
CRERERRRRARRRREERRERREREREREEEERRERERRERREREKERKERRKEEERREE LXK LR KRR EREREE
SUBROUTINE DENSITY(F,XDENS,NPT,SD,DSD,NHALF,NHALF1,NDIVT,DX,SHIFT)
COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(1), XDENS(1)
PI=3.1415926
SQ2PI=SQRT(2.*PI)
DO 10 I=1,NDIVT
XDENS(I1)=0.
10 CONTINUE
DG 20 I=1,NPT
TEMP=F(1)/DSD
ITEMP=IINT(TEMP) ! Locate the data belongs to which interval
IF (TEMP .GE. 0.) THEN
IF (ITEMP .GT. NHALF) ITEMP=NHALF-1
XDENS{NHALF1+ITEMP)=XDENS(NHALF1+ITEMP)+1.
ELSE
IF (ITEMP .LT. ~NHALF) ITEMP=-NHALF+1
XDENS (NHALF+ITEMP)=XDENS (NHALF+ITEMP)+1.
END IF
20 CONTINUE
Chikkkkkibkkiikkkkkikkkd kkkkdiopirkikkkkkkkik ki kkkikkipkkkkrkiiikkkkkkkrkE
C¥#%%¥ WRITE RESULTS *Eke
ottt 13 2333243333222 323 2222333342382 3223333232222 233 332333223333 333 243333
WRITE(7,1234) (TITLE(KK),KK=1,20)
1234 FORMAT(X,20A4)
WRITE(7,1234) (SUBTIT(KK),KK=1,20)
WRITE (7,210)
210 FORMAT(®' MAGNITUDE/SD PROBA. DENS. NO.OF OCCUR. GAUSSIAN’,
9

1 /s (NORMALIZED) ')
WRITE (10,211)
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211 FORMAT(’ MAGNITUDE/SD PROBA. DENSITY’,

1 /' (GAUSSIAN)’)

AREA=0.0

x="4 . 0

DO 40 I=1,NDIVT

XDX=X+DX

XDENS1=XDENS(I)/NPT/DX

AREA=AREA+XDENS1
C*****h*****************#********##**#******************#**###***************
C*¥%¥ CALCULATE THE THEORETICAL GAUSSIAN WITH ZERO MEAN *kk¥
CREAFERRRERERKRUKRREERKLITERERREEEREBEREEEEERREREXERREEKERRREEEERRREERLRF LR KRR KK

GAUSS=EXP{-X*X/Z.)/SQ2PI

GAUDX=EXP(-XDX*XDX/2.)/SQ2PI

=X+SHIFT

YDX=Y+DX

IF (I .EQ. 1) WRITE (7,220) Y,ZERC,ZER0O,GAUSS

WRITE (7,220) Y, XDENS1,XDENS(I),GAUSS

WRITE (7,220) YDX,XDENS1,XDENS(I),GAUDX
220  FORMAT (2(3x,F11.5),3X,F8.1,3X,F11.5)

IF (I .EQ. NDIVT) WRITE (7,220) YDX,ZERO,ZERO,GAUDX

IF (I .EQ. 1) WRITE (10,220) Y, GAUSS

WRITE (10,220) Y, GAUSS

WRITE (10,220} YDX, GAUDX

IF (1 .EQ. NDIVT) WRITE (10,220) YDX, GAUDX

X=X+DX
40 CONTINUE

AREA=AREA*DX

WRITE (6,700) SD, AREA
700 FORMAT (' SD = ’,E12.5,’ AREA OF DENSITY CURVE = ’,F8.4,/)

RETURN

END
CHERERRRERERRERRRRERERERRETRERARRREA RREEERRRERERRERERRRERRRERRRR KSR RRR RN DR R
Chkk k%
C+%%%  SUBROUTINE PEAKDIS kxk%
C¥¥xk  THIS SUBROUTINE CALCULATES THE PEAK DISTRIBUTION AND L 22 2
C4*x¢ THE THEORETICAL RAYLEIGH DISTRIBUTION kkkk
Chks xE¥E

C****#****t******#********#***************###*#****#****#*****#******t****#**
SUBROUTINE PEAKDI3(F,XNPK,NPT,SD,DSD,NHALF,NHALF1,NDIVT,DX,
1 TTOTAL,SHIFT)
COMMON/TITLES/ TITLE(20),SUBTIT(20)
DIMENSION F(1),XNPK(1)
DO 15 I=1,NDIVT
XNPK(I)=0.
15 CONTINUE
DO 20 I=1,NPT
IF (I .EQ. 1 .OR. I .EQ. NPT) GO TO &
DF1=F(I)-F(I-1)
DF2=F(I1+1)-F(I)
DSIGN=DF1*DF2
IF (DSIGN .GT. 0.) GO TO 20
IF (DF2 .GT. PF1) GO TO 20
TEMP=F(1)/DSD
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. I TEMP=1INT( TENP)
Lo IF (TEMP .GT. O.) THEN
o IF (ITEMP .GT. NHALF) ITEMP=RHALF-1
XNPK(NHALF1+ITEMP)=XNPK(NHALF1+ITEMP)+1,
ELSE
IF (ITEMP .LT. -NHALF) ITEMP=-NHALF+1
XNPK{NHALF+ITEMP)=XNPK ( NHALF+ITEMP)+1.
END IF
¢ 20  CONTINUE
XNPEAK=0.
DO 30 I=1,NDIVT A |
' XNPEAK=XNPEAK+XNPK(I) .
30  CONTINUE ! XNPEAK IS THE TOTAL NO. OF PEAKS !
PEAKT=XNPEAK/TTOTAL ! NO. OF PEAKS PER UNIT TIME \
WRITE (6,210) XNPEAK, PEAKT
WRITE(8,1234) (TITLE(KK),KK=1,20)
1234 FORMAT(X,20A4) .
WRITE(8,1234) (SUBTIT(KK),KK=1,20) ‘
WRITE (8,210) XNPEAK, PEAKT
210  FORMAT(’ TOTAL NO. OF PEAKS = ',F10.1,
1 ’ NO. OF PEAKS PER SEC. = ’,F10.1)
WRITE (8,211)
L 211 FORMAT(' MAGNITUDE/SD PEAK DISTR. NO. OF PEAKS RAYLEIGH',
= 1 /s (NORMALIZED)')
: - WRITE (11,212)
212 FORMAT(' MAGNITUDE/SD PBROBA. DENSITY®

1 /! (RAYLEIGH) ')
L i x='400
o DO 40 I=1,NDIVT
T XDX=X+DX
?ﬁﬁ XNPK1=XNPK(I)/XNPEAK/DX
. IF (XDX .LT. 0.0) THEN
"l RAYDX=0.0

B ELSE
S RAY=X*EXP(-X*X/2.)
RAYDX=XDX*EXP(~XDX*XDX/2.)
END IF
Y=X+SHIFT
L YDX=Y+DX
4 - IF (I .EQ. 1) WRITE (8,220) Y,ZERO,ZERO,RAY
gﬂ‘ " WRITE (8,220) Y, XNPK1,XNPK(I),RAY
WRITE (8,220) YDX,XNPK1,XNPK(I),RAYDX
220 FORMAT (2(3x,¥11.5),3X,F8.1,3X,F11.5)
v IF (I .EQ. NDIVT) WRITE (8,220) YDX,ZERO,ZERO,RAYDX
IF (I .EQ. 1) WRITE (11,220) X, RAY
WRITE (11,220) X, RAY
WRITE (11,220) XDX, RAYDX
IF (I .EQ. NDIVT) WRITE (11,220) XDX, RAYDX
X=X+DX
40 CONTINUE
RETURN
END
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. kkk¥

SUBROUTINE UPCROSSR ’ *EE%

: xRk

THIS SUBROUTINE CALCULATES THE UPCROSSING RJATE AT DIFFERENT Rk

THRESHOLD LEVELS. . x ***:
B %k

$*#*************#****t*****&i#****%********$x****R*#**ﬁ****#m****#*****

SUBROUTINE UPCROSSR(F,XCROSS,N™M',5D,D8D, NHALF, NHALF1 ,NDIVT,DX,
PTOTAL , SHIPT)

COMMON/TITLES/ TITLE(ZO),SUBTIT(ZU)

DIMENSTON F(1), XCROSS(1)

WRITE(9,1234) (TITLE(KK),KK=1,20)

FORMAT (X, 20A4)

WRITE(9,1234) (SUBTIT(KK),KK=1,20)

WRITE (9,210)

FORMAT(/, 3X, * THRESHOLD LEVEL/SD UPCROSSING RATE (#/8KEC.)’)

DO 10 I=1,NDIVT

JCROSS (1)=0.

CONTINUE

DO 20 I=1,NPT

IF (F(I) .GT. F(I+1)) GO TO 20 ! Only up-crosuing is counted.

TEMP1=F(1)/D3D

TEMP2=F(I+1)/DSD

ITEMP1=1INT(TEMP1)

ITEMP2=1INT(TEMP2)

IF (TEMPYT .GT. 0.) THEN

D0 30 K=ITEMP1,:TEMP2~1

JXCROSS (NHALF1414K)=XCROSS(NHALF1+1+K)+1.0

CONTINUE

ELSE

END IF

¥F (TEMP2 .LT. 0.) THEN

DO 40 K=ITEMP1,ITEMP2~1

XCROSS (NHALF+1+K )=XCROSS (NHALF+14K)+1.0

CONTINUE

ELSE

END IF

IF (TEMP1*#TEMP2 .LT. 0.) THEN

DO 50 K=ITEMP1,0

HCROSS (NHALF+1+K)=XCROSS(NHALF+1+K)+1.0

CONTINUE

00 60 K=0,ITEMP2-1

KCROSS(NHALF1+1+K)=XCRCSS (NHALF1+1+K)+1.0

CJONTINUE

ELSE

END IF

SONTINUE

{=-4,0+DX ! the lowest level for crossing is -{4-DX)SD

30 70 I=1,RDIVT

F=X+SHIFT

KCROSS(I)”XCROSS(I)/TTOTAL

JRITE (9,4v5) Y, XCROSS(I)
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FORMAT (10X,F11.5,10X,F9.3)

X=X+DX

200

CONTINUE
RETURN

END

70
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Crekk

CExxk This program calculates the damage from a given peak

Chkk distribution. Input the standard deviation of the stress
Ckxx¥ process, SD (in ksi) and the total # of peaks per second,
oL 231 TPEAK, and the material fatigue constants ZLAMDA and B.
Ck¥ki The peak distribution histogram is found on FOR008 created
Ckx%¥ from the progras PDF run earlier (10 divisions per s.d. in

Chxkk the histogram). Qutput is E[Mt]*tau and time to failure in
Ck¥x¥ seconds. .

BRkE
*kk%
*%%%
L2 2L
*&x%
xkkk
L2224
2AEX
L2 22
L2222

Chkk
CHERRRERRBLRRRRRRETRERRREEERRRRE LR RRERR R R TR R R R R Rk bRk R Rk
WRITE(6,1010)

1010 FORMAT(1H1,//,10X,’ DAMAGE "/

1 10x,° FOR AFSC/ASD/PMRNA Y5/

2 10%,° WPAFB,CHIO : "+/s

3 10X,’ BY ANAMET LABORATORIES, INC.’,/,

4 10X,°* HAYWARD, CALIFORNIA Yol s

5 10X, *CONTRACT NO. F33615-89-C-3210',//)

READ(5,100) SD,TPEAK,ZLAMDA,B
100  FORMAT(4F10.0)
1009 FORMAT(10X,’ STANDARD DEVIATION OF STRESS PROCESS= ',F10.1,/,

1 10x,’ TOTAL NUMBER OF PEAKS PER SECOND= ',F10.1,/,
2 10X,* FATIGUE PARAMETER, LANDA= ’,F10.2,/, -
3 10%,’ FATIGUE PARAMETER, B= ',E10.3,/)
DX=0.1%3D

SUM=0.0

READ (8,1100)
1100 FORMAT(/////////)}
Ok
DO 10 1=1,80
READ (8,1200) X,Y
1200  FORMAT(26,/)
IF (Y .EQ. 0.0) GO TO 10
X=(X+0,05)%SD
PROB=Y/SD
SLAMDA=ABS (X ) ¥*ZLAMDA
SUM=SUM+PROB*SLAMDA
10  CONTINUE
SUM=SUM*DX
EMT=B/SUM
TFAIL=B/SUM/TPEAK
WRITE (6,1300) SUM, EMT, TFAIL
1300 FORMAT(10X,’  INTEGRATION = ’,E14.6,/,

1 10x,’* g[Mt]l*tau = ’',E14.6,/,
2 10X,’ TIME TO FAILURE= ’,Ei4.6,' SEC’,/)
STOP
END
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DEPARTMENT OF THE AIR FORCE
AIR FORCE RESEARCH LABOGRATORY
WRIGHT-PATTERSON AIR FORCE BASE OHIO 45439

g.14-77
MEMORANDUM FOR: Defense Technical Information Center/OMI

8725 John J. Kingman Rd, Suite (0944
Ft Belvoir, VA 22060-6218

FROM:  Det1 AFRL/WST
Bldg 640 Rm 60 ’
2331 12th Street
Wright-Patterson AFB OH 45433-7950

SUBJECT: Notice of Changes in Teckrical Reportts) { Ak, Ll )
Please change sub]ect report(s) as follows:
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